

MALLA REDDY COLLEGE OF

ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Digital Material

DATA SCIENCE-TOOLS

& TECHNIQUES

R20A6704
Prepared by

Dr M V Kamal
Assoc. Prof & HoD

Department of
COMPUTER SCIENCE & ENGINEERING-DATA SCIENCE

(EMERGING TECHNOLOGIES)

M R C E T CAMPUS
(Autonomous Institution – UGC, Govt. of India)

 (Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‗A‘ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India.

Contact Number: 040-23792146/64634237, E-Mail ID: mrcet2004@gmail.com, website: www.mrcet.ac.in

mailto:mrcet2004@gmail.com
http://www.mrcet.ac.in/

(R20A6704) DATA SCIENCE TOOLS AND TECHNIQUES

COURSE OBJECTIVES:

1. Study basic tools available for data science and analytics

2. Study usage of Excel tool, R and KNIME tool

3. Student will study usage of various data sources with Excel, R and Knime

4. Student will study working with various Charts

5. Student will learn working with various data type

UNIT I (Data Science and Various Data Science Tools)

Introduction to Data Science-Introduction- Definition - Data Science in various
fields - Examples – Data Pre-Processing and Data Wrangling with Techniques.
Impact of Data Science - Data Analytics Life Cycle

Data Science Toolkit.: Brief Introduction to data science tools: SaS, Apache Spark,
BigML, Excel, R-Programming, TensorFlow, KNIME, Tableau, PowerBI etc with
advantages and disadvantages.

UNIT-II (R – Programming - I)

Introduction to R- Features of R – Environment, How to run R, R Sessions and
Functions, Basic Math, Variables, Data Types, Vectors, Conclusion, Advanced Data
Structures, Data Frames, Lists, Matrices, Arrays, Classes, R Programming
Structures, Control Statements, Loops, - Looping Over Nonvector Sets,- If-Else,
Arithmetic and Boolean Operators and values, Default Values for Argument, Return
Values, Functions are Objects, Recursion,

Basic Functions - R help functions - R Data Structures. Vectors: Definition-
Declaration - Generating - Indexing - Naming - Adding & Removing elements -
Operations on Vectors - Recycling - Special Operators - Vectorized if- then else-
Vector Equality – Functions for vectors - Missing values - NULL values - Filtering &
Subsetting.

UNIT-III (Working With Excel)

Introduction: Data Analysis, Excel Data analysis. Working with range names.
Tables. Cleaning Data. Conditional formatting, Sorting, Advanced Filtering, Lookup
functions, Pivot tables, Data Visualization, Data Validation. Understanding
Analysis tool pack: Anova, correlation, covariance, moving average, descriptive
statistics, exponential smoothing, fourier Analysis, Random number generation,
sampling, t-test, f-test, and regression.

UNIT-IV

KNIME : Organizing your work, Nodes, Meta nodes, Ports, Flow variables, Node
views. User Interface. Data Preparation: Importing Data-Database, tabular files,
web services. Transforming the Shape- Filtering rows, Appending tables ,Less
columns, More columns, Group By, Pivoting and Unpivoting, One2Many and
Many2One,Cosmetic transformations. Transforming values: Generic
transformations , Conversion between types, Binning, Normalization, Multiple
columns, XML transformation, Time transformation, Smoothing, Data generation,
Constraints ,Loops, Workflow customization.

UNIT-V

Data Exploration:

Computing statistics, Overview of visualizations, Visual guide for the views
,Distance matrix, Color , Size ,Shape ,KNIME views, HiLite , Use cases for HiLite,
Row IDs, Extreme values. Basic KNIME views, The Box plots ,Hierarchical
clustering, Histograms, Interactive Table, The Lift chart, Lines, Pie charts ,The
Scatter plots, JFree Chart ,The Bar charts, The Bubble chart, Heatmap , The
Histogram chart, The Interval chart, The Line chart, The Pie chart, The Scatter plot

Text Books:

1. Data Analysis with Excel by Manish Nigam. bpb Publications

2. R for Data Science, O'Reilly by Hadley Wickham 2016.
3. KNIME Essentials, by Gábor Bakos,2013
4. Data Science Tools by Christopher Greco,2020

5. Learn TensorFlow2.0, by Pramod Singh, Apress Publication (1st Edition)

Reference Books:

1. Introduction to Data Science a Python approach to concepts, Techniques
and Applications, Igual, L;Seghi’, S. Springer, ISBN:978-3-319-50016-4.

2. ALL-IN-ONE-EXCEL 2022 BIBLE FOR DUMMIES BY Bryant Shelton

3. Excel® 2019 BIBLE BY Michael Alexander ,Dick Kusleika

COURSE OUTCOMES:
1. Student will gain ability to use Excel

2. Student will gain ability to use R

3. Student will gain ability to use Knime

4. Student will be able to use various nodes available in knime

5. Student will be able to use various data sources with Knime, R

6. Student will be able to draw various Charts

6. Student will be able to explore data & data preparation.

Websites:

1. About R: https://www.r-project.org/about.html
2. About Excel: https://support.microsoft.com/en-us/office/excel-video-

training-9bc05390-e94c-46af-a5b3-d7c22f6990bb
3. https://www.knime.com/learning

https://www.r-project.org/about.html
https://support.microsoft.com/en-us/office/excel-video-training-9bc05390-e94c-46af-a5b3-d7c22f6990bb
https://support.microsoft.com/en-us/office/excel-video-training-9bc05390-e94c-46af-a5b3-d7c22f6990bb
https://www.knime.com/learning

DATA SCIENCE TOOLS AND TECHNIQUES LAB

B.Tech. III Year I Sem L T P C
0 0 3 1.5

COURSE OBJECTIVES:

1. To learn Installation of R, Knime

2. To learn usage of EXCEL, R, KNIME for various data sources

3. To Perform various operations on tables of data sourse

4. To Create various visualizations

5. To learn various charts and plotting techniques

OUTCOMES:

After successfully studying this course, students will:

1. Learn Installation of R, KNIME

2. Learn usage of Excel,R, for various data sources

3. Perform various operations on tables for different data source

4. Create various visualizations

5. Various charts and plotting techniques

Week 1: (Using, Excel) Working with fundamental formulas, text, date, math
and statistic functions.

Week 2: Working with conditional formatting, chats, what if analysis.

Week 3: Working with Data Analysis. Case study.

Week 4: Installation of R and KNIME

Week 5: Exploring the data using box plot, bar chart

Week 6: Implementation and use of data frames in R

Week 7: Study and implementation of Data Visualization with ggplot2

Week 8: Data Manipulation with dplyr package

Week 9: Study and implementation of various control structures in R

Week 10: Importing the different types of datasets in knime

Week 11: Download the VGsales data from kaggle and apply
different types of filters in knime

Week 12: Download the bank dataset from UCI Repository and explore using knime.

Week 13: CASE Study: KNIME Testing the Model.

Text Books:

1. R for Data Science, O'Reilly by Hadley Wickham 2016.
2. Introduction to Data Science a Python approach to concepts, Techniques

and Applications, Igual, L;Seghi’, S. Springer, ISBN:978-3-319-50016-4.
3. Data Analysis with Excel by Manish Nigam. bpb Publications
4. KNIME Essentials, by Gábor Bakos, 2013
5. Data Science Tools by Christopher Greco, 2020
6. ALL-IN-ONE-EXCEL 2022 BIBLE FOR DUMMIES BY Bryant Shelton
7. Excel® 2019 BIBLE BY Michael Alexander, Dick Kusleika

UNIT - I

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science
Tools & Techniques

(R20A6704) – III B.Tech II Sem

By

Dr. M V Kamal
Professor & HoD

Dept. of Emerging Technologies (Domain Courses)

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

(*DSTT)

Syllabus
UNIT I (Data Science and Various Data Science

Tools)

Introduction to Data Science-Introduction- Definition

- Data Science in various fields - Examples – Data

Preparation - Data Pre-Processing and Data

Wrangling with Techniques. Impact of Data Science -

Data Analytics Life Cycle

Data Science Toolkit.: Brief Introduction to data

science tools: SaS, Apache Spark, BigML, Excel, R-

Programming, TensorFlow, KNIME, Tableau, PowerBI

etc with advantages and disadvantages.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

Syllabus
UNIT II (R Programming)
Introduction to R- Features of R – Environment, How to run R, R

Sessions and Functions, Basic Math, Variables, Data Types,

Vectors, Conclusion, Advanced Data Structures, Data Frames,

Lists, Matrices, Arrays, Classes, R Programming Structures,

Control Statements, Loops, - Looping Over Nonvector Sets,- If-

Else, Arithmetic and Boolean Operators and values, Default

Values for Argument, Return Values, Functions are Objects,

Recursion,

Basic Functions - R help functions - R Data Structures. Vectors:

Definition- Declaration - Generating - Indexing - Naming -

Adding & Removing elements - Operations on Vectors -

Recycling - Special Operators - Vectorized if- then else-Vector

Equality – Functions for vectors - Missing values - NULL values

- Filtering & Subsetting.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

Syllabus
UNIT III (Excel & Advance Excel)

Introduction: Data Analysis, Excel Data analysis. Working with

range names. Tables. Cleaning Data. Conditional formatting,

Sorting, Advanced Filtering, Lookup functions, Pivot tables,

Data Visualization, Data Validation. Understanding Analysis

tool pack: Anova, correlation, covariance, moving average,

descriptive statistics, exponential smoothing, fourier Analysis,

Random number generation, sampling, t-test, f-test, and

regression.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

Syllabus
UNIT IV (KNIME) KNIME : Organizing your work, Nodes,

Meta nodes, Ports, Flow variables, Node views. User Interface.

Data Preparation: Importing Data-Database, tabular files, web

services. Transforming the Shape- Filtering rows, Appending

tables ,Less columns, More columns, Group By, Pivoting and

Unpivoting, One2Many and Many2One,Cosmetic

transformations.

Transforming values: Generic transformations , Conversion

between types, Binning, Normalization, Multiple columns, XML

transformation, Time transformation, Smoothing, Data

generation, Constraints ,Loops, Workflow customization.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

Syllabus
UNIT V (Data Exploration) KNIME : Organizing your

work, Nodes, Meta nodes,
Computing statistics, Overview of visualizations, Visual guide

for the views ,Distance matrix, Color , Size ,Shape ,KNIME

views, HiLite , Use cases for HiLite, Row IDs, Extreme values.

Basic KNIME views, The Box plots ,Hierarchical clustering,

Histograms, Interactive Table, The Lift chart, Lines, Pie charts

,The Scatter plots, JFree Chart ,The Bar charts, The Bubble

chart, Heatmap , The Histogram chart, The Interval chart, The

Line chart, The Pie chart, The Scatter plot

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Let’s Start what is DST&T…??

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

(*DSTT)

Syllabus
UNIT I (Data Science and Various Data Science

Tools)

Introduction to Data Science-Introduction- Definition

- Data Science in various fields - Examples – Data

Preparation: Data Pre-Processing and Data Wrangling

with Techniques. Impact of Data Science - Data

Analytics Life Cycle

Data Science Toolkit.: Brief Introduction to data

science tools: SaS, Apache Spark, BigML, Excel, R-

Programming, TensorFlow, KNIME, Tableau, PowerBI

etc with advantages and disadvantages.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What is Data Science..?

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What is Data Science..?

 Data science provides meaningful information based on

large amounts of complex data or big data. Data

science, or data-driven science, combines different

fields of work in statistics and computation to

interpret data for decision-making purposes.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science..

 Data science is the field of study that combines domain

expertise, programming skills, and knowledge of

mathematics and statistics to extract meaningful insights

from data.

 Data Science is a blend of various tools, algorithms, and

machine learning principles with the goal to discover

hidden patterns from the raw data.

 In Simple, ―An automated machine based insights

extraction from huge volume of data‖.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What is Data Science..?(Contd..)

 Dealing with unstructured and structured data, Data

Science is a field that comprises everything that related

to data cleansing, preparation, and analysis.

 Data Science is the combination of statistics, mathematics,

programming, problem-solving, capturing data in ingenious

ways, the ability to look at things differently, and the

activity of cleansing, preparing, and aligning the data.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What are the popular

Data Science
Tools & Techniques

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science – Some of the Popular Tools

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Contd…

R

Microsoft Power BI

KNIME

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Pre-Processing

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Preprocessing…

 Overall Process of Data Science…

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Preprocessing…

 Data preprocessing, a component of data preparation,

describes any type of processing performed on raw

data to prepare it for another data processing procedure.

 In any Machine Learning process, Data Preprocessing is

that step in which the data gets transformed, or Encoded,

to bring it to such a state that now the machine can easily

parse it.

 In other words, the features of the data can now be easily

interpreted by the algorithm.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Why Data Pre-Processing is required ?

 Data pre-processing also knows as data wrangling is the

technique of transforming the raw data i.e. an incomplete,

inconsistent, data with lots of error, and data that lack

certain behavior, into understandable format carefully

using the different steps (i.e. from importing libraries, data

to checking of missing values, categorical followed by

validation and feature scaling) so that proper

interpretations can be made from it and negative results

can be avoided, as the quality of the model in machine

learning highly depends upon the quality of data we train

it on.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Tasks of Data Preprocessing

 Data Cleansing

 Data Editing

 Data Reduction

 Data Wrangling

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What are the benefits of

Data Preprocessing important?

 Inaccurate data (missing data)

 The presence of noisy data (erroneous data and

outliers)

 Inconsistent data

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Stages / Steps..

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What Is Data Wrangling?

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

What Is Data Wrangling?

 Data Wrangling is a technique that is executed at the

time of making an interactive model.

 In other words, it is used to convert the raw data into the

format that is convenient for the consumption of data.

This technique is also known as Data Munging.

 This method also follows certain steps such as after

extracting the data from different data sources, sorting of

data using the certain algorithms are performed,

decompose the data into a different structured format

and finally store the data into another database.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Mining & Data Wrangling

 Data mining is the process of finding patterns and

relationships hidden in large data sets.

 Data mining helps businesses to decipher meaningful

patterns in their data, whether it is open-source data or

not.

 It is a superset of data mining and requires multiple other

decision-making processes, such as data cleaning,

transforming, integrating, etc.

 In this regard, wrangled data is important for accurate

reporting and business intelligence insights.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Tasks of Data Wrangling

The tasks of Data wrangling are described below -

 Discovering

 Structuring

 Cleaning

 Enrichment

 Validating

 Publishing

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Here are a few more amazing advantages with

Data Wrangling

 Data Wrangling helps to improve Data Usability by converting

data into a format that is compatible with the end system.

 It aids in the quick and easy creation of data flows in an Intuitive

User Interface where the data flow process can be easily

scheduled and automated.

 Data Wrangling also integrates Different Types of Information,

as well as the sources, such as databases, files, web services, etc.

 Data wrangling allows users to process Massive Volumes of

Data and share data flow techniques easily.

 Reduces Variable Expenses related to using external APIs or

paying for software platforms that aren’t considered business-

critical.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Analytics Life Cycle

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Analytics Life Cycle

Discovery

Data Preparation

Model Planning

Model Building

Communication

Results

Operationalize

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Objective

 First and foremost, Understand the Objective, the

purpose. Why are you doing this? What outcome you

want from it?.

 If these questions are not clear, the rest is in vain. It is the

same way that we do in SDLC (Software Development

Life Cycle) model, If the requirement is not clear, then

you might develop or test the software wrongly.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 1: Discovery

Understand the Data:

 Data discovery is the process of collecting and analyzing

disparate data sources to form a coherent picture of your

company’s data.

 The data science team learn and investigate the problem.

 Develop context and understanding.

 Come to know about data sources needed and available

for the project.

 The team formulates initial hypothesis that can be later

tested with data.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 2: Data Preparation

Data Cleaning and Transformation

 Methods to investigate the possibilities of pre-processing,

analyzing, and preparing data before analysis and

modeling.

 It is required to have an analytic sandbox. The team

performs, loads, and transforms to bring information to

the data sandbox.

 Data preparation tasks can be repeated and not in a

predetermined sequence.

 Some of the tools used commonly for this process

include – Matlab, Hadoop, Alpine Miner, Open Refine, etc.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Sandbox..?

 What Is Data Sandbox?

 The goal of an analytical sandbox is to enable business

people to conduct discovery and situational analytics.

 A data sandbox is a secure environment that lets

you test and learn with real-world data.

 Data sandboxes help teams make more informed

decisions by giving them access to valuable insights in

large datasets. A data sandbox is a place where you can

test and experiment with data.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 3: Model Planning

 In this phase, the team will analyze the quality of the data

and find an appropriate model for the project.

 An analytic sandbox is used to work with the data and to

perform analytics throughout the project duration.

 Data can be loaded into the sandbox in three ways:

 Extract, Transform, Load (ETL) — The data is transformed based on a

set of business rules and then loaded into the sandbox.

 Extract, Load, Transform (ELT) — The data is loaded into the sandbox

and then transformed according to a set of business rules.

 Extract, Transform, Load, Transform (ETLT) — It has two

transformation levels and is a combination of ETL and ELT.

 Common tools used are — R, SAS/ACCESS, SQL Analysis services,etc.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 4: Model Building

 The team creates datasets for training, testing as well as

production use.

 The team is also evaluating whether its current tools are

sufficient to run the models or if they require an even

more robust environment to run models.

 Common commercial tools used here are — Matlab, STATISTICA, Alpine

Miner, etc.

 Common Free tools used are — R, Octave, WEKA, Python, etc.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 5: Communicate Results

 After executing model team need to compare outcomes

of modeling to criteria established for success and failure.

 Team considers how best to articulate findings and

outcomes to various team members and stakeholders,

taking into account warning, assumptions.

 Team should identify key findings, quantify business value,

and develop narrative to summarize and convey findings

to stakeholders.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Phase 6: Operationalize

 The team communicates benefits of project more broadly

and sets up pilot project to deploy work in controlled

way before broadening the work to full enterprise of

users.

 This approach enables team to learn about performance

and related constraints of the model in production

environment on small scale , and make adjustments

before full deployment.

 The team delivers final reports, briefings, codes.

 Free or open source tools – Octave, WEKA, SQL,

MADlib.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Analytics Life Cycle

Discovery

Data Preparation

Model Planning

Model Building

Communication

Results

Operationalize

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

(*DSTT)

Syllabus
UNIT I (Data Science and Various Data Science

Tools)

Introduction to Data Science-Introduction- Definition

- Data Science in various fields - Examples – Data

Preparation - Data Pre-Processing and Data

Wrangling with Techniques. Impact of Data Science -

Data Analytics Life Cycle

Data Science Toolkit.: Brief Introduction to data

science tools: SaS, Apache Spark, BigML, Excel, R-

Programming, TensorFlow, KNIME, Tableau, PowerBI

etc with advantages and disadvantages.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science Toolkit

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science Toolkit

 Brief Introduction to data science tools:

 SaS,

 Apache Spark,

 BigML,

 Excel,

 R-Programming,

 TensorFlow,

 KNIME,

 Tableau,

 PowerBI

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science Toolkit

Refer the word document about Data Science Toolkit Topic

Click here

Few Data Science Toolkits.pdf

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science
Tools & Techniques

(R20A6704) – III B.Tech II Sem

By

Dr. M V Kamal
Professor & HoD

Dept. of Emerging Technologies (Domain Courses)

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Data Science-Tools & Techniques

(*DSTT)

Syllabus
UNIT I – PART-B

Data Science Toolkit.: Brief Introduction to data

science tools: SaS, Apache Spark, BigML, Excel, R-

Programming, TensorFlow, KNIME, Tableau, PowerBI

etc with advantages and disadvantages.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

SAS

 Statistical Analysis System (SAS) is software that enables

you to perform extensive data analysis. The full form of

SAS is Statistical Analysis System. SAS was developed in

the early 1970s at North Carolina State University.

 It is Used for data management, advanced

analytics, multivariate analysis, business

intelligence, criminal investigation, and predictive analytics.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

 SAS Programming is a language used for analytical use. It

is used for a very long time. All major companies use SAS

as their official language for analysis. It’s due to its features

and edge points that SAS is a very preferred tool. It has a

huge job market too.

 There are many reasons for which SAS is preferred

over R programming language and Python. But it is

also true that there are some limitations of SAS that are

overcome by R and Python.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

SaS Advantages

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

SaS Disadvantages

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Apache Spark

 Apache Spark is a lightning-fast unified analytics engine

for big data and machine learning. It is the largest open-

source project in data processing.

 Since its release, it has met the enterprise’s expectations

in a better way in regards to querying, data processing

and moreover generating analytics reports in a better and

faster way.

 Internet substations like Yahoo, Netflix, and eBay, etc have

used Spark at large scale. Apache Spark is considered as

the future of Big Data Platform.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Advantages and Disadvantage of

Apache Spark

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

BigML

 BigML is a machine learning platform designed to enable

developers to build enterprise-level applications that are

capable of real-time predictions.

 It has a user-friendly and visually engaging interface that

allows even beginners and amateurs to program models

and execute actions.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

BigML Advantage

 The main benefits of BigML are its integration and

automation capabilities, its flexibility to your preferred

programming language, and its ability to serve real-time

predictions.

 And even..

 Scalability

 Bindings & Adaptability

 One-Line Automation



Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Disadvantage of BigML

 Some advanced features like ensemble methods and

anomaly detection.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

 TensorFlow is an open-source machine learning concept

which is designed and developed by Google.

 It offers a very high level and abstract approach to

organizing low-level numerical programming.

 TensorFlow stands as the trending and competition

among its associates.

 With all its capabilities, it eases the computations of the

machine and deep learning.

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

 Microsoft Power BI is an interactive data visualization

software product that helps users find insights within an

organization's data.

 It's part of the Microsoft Power Platform and is designed

for business intelligence

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Power BI

 Power BI is a collection of software services, apps, and

connectors that work together to turn your unrelated

sources of data into coherent, visually immersive, and

interactive insights.

 Your data might be an Excel spreadsheet, or a collection

of cloud-based and on-premises hybrid data warehouses.

Power BI lets you easily connect to your data sources,

visualize and discover what's important, and share that

with anyone or everyone you want.

 -Source: Microsoft

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

Power BI

 Power BI can help users:

 Connect data sets

 Transform and clean data into a data model

 Create charts or graphs to provide visuals of the data

 Create reports and dashboards that present data sets in

multiple ways using visuals

 See data through a single pane of glass

 Offers a consolidated view across a business

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

PRO

 Cost- Free to Use

 Learning Curve

 Constant Updates and Innovations

 Data Sources

 Excel Integration

 Custom Visualizations

CONS

 The User Interface

 Rigid Formulas

 Visuals Configurability

 Table Relationships

Instructor: Dr. M V Kamal | HoD | CSE (Domain Courses) Dept. | MRCET

18 DATA SCIENCE TOOLS TO CONSIDER USING IN 2024

-Source: https://www.techtarget.com

Numerous tools are available for data science applications. Read about 18,

including their features, capabilities and uses, to see if they fit your analytics

needs.

The increasing volume and complexity of enterprise data as well as its central role in

decision-making and strategic planning are driving organizations to invest in the

people, processes and technologies they need to gain valuable business insights

from their data assets. That includes a variety of tools commonly used in data

science applications.

In an annual survey conducted by consulting firm Wavestone, 87.9% of chief data

officers and other IT and business executives from 102 large organizations said

investments in data and analytics are a top priority. Looking ahead, 82.2% expect

spending increases this year, according to a report on the Data and AI Executive

Leadership Survey that was published in December 2023.

The survey also found that 87% of the responding organizations got measurable

business value from their data and analytics investments in 2023 -- slightly down

from 91.9% in last year's survey. But strategic analytics goals improved. Half of the

respondents said they're competing on data and analytics, up about 10% from 2022.

Also, 48.1% feel they have created a data-driven organization -- more than double

last year's 23.9%.

As data science teams build their portfolios of enabling technologies to achieve

those analytics goals, they can choose from a wide selection of tools and platforms.

Here's a rundown of 18 top data science tools that might aid you in the analytics

process, listed in alphabetical order, with details on their features and capabilities as

well as some potential limitations.

https://www.techtarget.com/searchenterpriseai/definition/data-science
https://www.techtarget.com/searchenterpriseai/definition/data-science
https://www.techtarget.com/searchcio/definition/chief-data-officer-CDO
https://www.techtarget.com/searchcio/definition/chief-data-officer-CDO
https://www.wavestone.com/en/insight/data-and-ai-executive-leadership-survey-2024/
https://www.techtarget.com/searchbusinessanalytics/feature/How-to-structure-and-manage-a-data-science-team

1. Apache Spark

Apache Spark is an open source data processing and analytics engine that can

handle large amounts of data -- upward of several petabytes, according to

proponents. Spark's ability to rapidly process data has fueled significant growth in

the use of the platform since it was created in 2009, making the Spark project one of

the largest open source communities among big data technologies.

Due to its speed, Spark is well suited for continuous intelligence

applications powered by near-real-time processing of streaming data. However, as a

general-purpose distributed processing engine, Spark is equally suited for extract,

transform and load uses as well as other SQL batch jobs. In fact, Spark initially was

touted as a faster alternative to the MapReduce engine for batch processing in

Hadoop clusters.

Spark is still often used with Hadoop but can also run standalone against other file

systems and data stores. It features an extensive set of developer libraries and APIs,

including a machine learning library and support for key programming languages,

making it easier for data scientists to quickly put the platform to work.

2. D3.js

Another open source tool, D3.js is a JavaScript library for creating custom data

visualizations in a web browser. Commonly known as D3, which stands for Data-

Driven Documents, it uses web standards such as HTML, Scalable Vector Graphics

and CSS instead of its own graphical vocabulary. D3's developers describe it as a

dynamic and flexible tool that requires a minimum amount of effort to generate visual

representations of data.

D3.js lets visualization designers bind data to documents via the Document Object

Model and then use DOM manipulation methods to make data-driven

transformations to the documents. First released in 2011, it can be used to design

various types of data visualizations and supports features such as interaction,

animation, annotation and quantitative analysis.

D3 includes more than 30 modules and 1,000 visualization methods, making it

complicated to learn. In addition, many data scientists don't have JavaScript skills.

https://www.techtarget.com/searchdatamanagement/The-ultimate-guide-to-big-data-for-businesses
https://www.linkedin.com/pulse/continuous-intelligence-faseeur-gundulur
https://www.techtarget.com/searchenterpriseai/definition/data-scientist
https://www.techtarget.com/searchbusinessanalytics/tip/12-data-visualization-techniques-for-effective-BI-applications

As a result, they might be more comfortable with a commercial visualization tool

such as Tableau, leaving D3 to be used more by data visualization developers and

specialists who are also members of data science teams.

3. IBM SPSS

IBM SPSS is a family of software for managing and analyzing complex statistical

data. It includes two primary products: SPSS Statistics, a statistical analysis, data

visualization and reporting tool, and SPSS Modeler, a data science and predictive

analytics platform with a drag-and-drop UI and machine learning capabilities.

SPSS Statistics covers every step of the analytics process, from planning to model

deployment, and enables users to clarify relationships between variables, create

clusters of data points, identify trends and make predictions, among other

capabilities. It can access common structured data types and offers a combination of

a menu-driven UI, its own command syntax, and the ability to integrate R and Python

extensions. It also has features for automating procedures and import-export ties to

SPSS Modeler.

Created by SPSS Inc. in 1968, initially with the name Statistical Package for the

Social Sciences, the statistical analysis software was acquired by IBM in 2009, along

with the predictive modeling platform, which SPSS had previously bought. While the

product family is officially called IBM SPSS, the software is still usually known simply

as SPSS.

4. Julia

Julia is an open source programming language used for numerical computing as well

as machine learning and other kinds of data science applications. In a 2012 blog

post announcing Julia, its four creators said they set out to design one language that

addressed all their needs. A big goal was to avoid having to write programs in one

language and convert them to another for execution.

To that end, Julia combines the convenience of a high-level dynamic language with

performance that's comparable to statically typed languages, such as C and Java.

Users don't have to define data types in programs, but an option allows them to do

https://www.techtarget.com/whatis/definition/statistical-analysis
https://www.techtarget.com/searchenterpriseai/definition/predictive-modeling
https://www.techtarget.com/searchbusinessanalytics/feature/8-top-data-science-applications-and-use-cases-for-businesses

so. The use of a multiple dispatch approach at runtime also helps to boost execution

speed.

Julia 1.0 became available in 2018, nine years after work began on the language;

the latest version is 1.9.4, with a 1.10 update now available for release candidate

testing. The documentation for Julia notes that because its compiler differs from the

interpreters in data science languages like Python and R, new users "may find that

Julia's performance is unintuitive at first." But, it claims, "once you understand how

Julia works, it's easy to write code that's nearly as fast as C."

5. Jupyter Notebook

An open source web application, Jupyter Notebook enables interactive collaboration

among data scientists, data engineers, mathematicians, researchers and other

users. It's a computational notebook tool that can be used to create, edit and share

code as well as explanatory text, images and other information. For example,

Jupyter users can add software code, computations, comments, data visualizations

and rich media representations of computation results to a single document, known

as a notebook, which can then be shared with and revised by colleagues.

As a result, notebooks "can serve as a complete computational record" of interactive

sessions among the members of data science teams, according to Jupyter

Notebook's documentation. The notebook documents are JSON files that have

version control capabilities. In addition, a Notebook Viewer service lets users render

notebooks as static webpages for viewing by users who don't have Jupyter installed

on their systems.

Jupyter Notebook's roots are in the programming language Python. It was originally

part of the open source IPython interactive toolkit project before being split off in

2014. The loose combination of Julia, Python and R gave Jupyter its name. Along

with supporting those three languages, Jupyter has modular kernels for dozens of

others. The open source project also includes JupyterLab, a newer web-based UI

that's more flexible and extensible than the original one.

https://www.techtarget.com/searchdatamanagement/definition/data-engineer

6. Keras

Keras is a programming interface that enables data scientists to access and use the

TensorFlow machine learning platform more easily. It's an open source deep

learning API and framework written in Python that runs on top of TensorFlow. It is

now integrated into that platform. Keras previously supported multiple back ends but

was tied exclusively to TensorFlow starting with its 2.4.0 release in June 2020.

As a high-level API, Keras was designed to drive easy and fast experimentation that

requires less coding than other deep learning options. The goal is to accelerate

the implementation of machine learning models -- in particular, deep learning neural

networks -- through a development process with "high iteration velocity," as the

Keras documentation puts it.

The Keras framework includes a sequential interface for creating relatively simple

linear stacks of layers with inputs and outputs as well as a functional API for building

more complex graphs of layers or writing deep learning models from scratch. Keras

models can run on CPUs or GPUs and be deployed across multiple platforms,

including web browsers as well as Android and iOS mobile devices.

7. Matlab

Developed and sold by software vendor MathWorks since 1984, Matlab is a high-

level programming language and analytics environment for numerical computing,

mathematical modeling and data visualization. It's primarily used by conventional

engineers and scientists to analyze data; design algorithms; and develop embedded

systems for wireless communications, industrial control, signal processing and other

applications. This is often in concert with a companion Simulink tool that offers

model-based design and simulation capabilities.

While Matlab isn't as widely used in data science applications as languages such as

Python, R and Julia, it does support machine learning and deep learning, predictive

modeling, big data analytics, computer vision, and other work done by data

scientists. Data types and high-level functions built into the platform are designed to

speed up exploratory data analysis and data preparation in analytics applications.

https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://www.techtarget.com/searchenterpriseai/feature/How-to-build-a-machine-learning-model-in-7-steps
https://www.techtarget.com/searchenterpriseai/definition/neural-network
https://www.techtarget.com/searchenterpriseai/definition/neural-network
https://www.techtarget.com/searchbusinessanalytics/definition/big-data-analytics
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation

Considered relatively easy to learn and use, Matlab -- short for "matrix laboratory" --

includes prebuilt applications but also lets users build their own. It also has a library

of add-on toolboxes with discipline-specific software and hundreds of built-in

functions, including the ability to visualize data in 2D and 3D plots.

8. Matplotlib

Matplotlib is an open source Python plotting library that's used to read, import

and visualize data in analytics applications. Data scientists and other users can

create static, animated and interactive data visualizations with Matplotlib, using it in

Python scripts, the Python and IPython shells, Jupyter Notebook, web application

servers, and various GUI toolkits.

The library's large code base can be challenging to master, but it's organized in a

hierarchical structure that's designed to enable users to build visualizations mostly

with high-level commands. The top component in the hierarchy is pyplot, a module

that provides a "state-machine environment" and a set of simple plotting functions

like those in Matlab.

First released in 2003, Matplotlib also includes an object-oriented interface that can

be used together with pyplot or on its own. It supports low-level commands for more

complex data plotting. The library is primarily focused on creating 2D visualizations

but offers an add-on toolkit with 3D plotting features.

9. NumPy

Short for "Numerical Python," NumPy is an open source Python library that's used

widely in scientific computing, engineering, and data science and machine

learning applications. The library consists of multidimensional array objects and

routines for processing those arrays to enable various mathematical and logic

functions. It also supports linear algebra, random number generation and other

operations.

One of NumPy's core components is the N-dimensional array (ndarray) which

represents a collection of items that are the same type and size. An associated data-

type object describes the format of the data elements in an array. The same data

https://www.techtarget.com/searchenterpriseai/feature/Data-visualization-in-machine-learning-boosts-data-scientist-analytics
https://www.techtarget.com/searchbusinessanalytics/feature/Data-science-vs-machine-learning-vs-AI-How-they-work-together
https://www.techtarget.com/searchbusinessanalytics/feature/Data-science-vs-machine-learning-vs-AI-How-they-work-together

can be shared by multiple ndarrays, and data changes made in one can be viewed in

another.

NumPy was created in 2006 by combining and modifying elements of two earlier

libraries. The NumPy website touts it as "the universal standard for working with

numerical data in Python." It is generally considered one of the most useful libraries

for Python because of its numerous built-in functions. It's also known for its speed,

partly resulting from the use of optimized C code at its core. In addition, various other

Python libraries are built on top of NumPy.

10. Pandas

Another popular open source Python library, pandas typically is used for data

analysis and manipulation. Built on top of NumPy, it features two primary data

structures: the Series one-dimensional array and the DataFrame, a two-dimensional

structure for data manipulation with integrated indexing. Both can accept data from

NumPy ndarrays and other inputs. A DataFrame can also incorporate multiple Series

objects.

Created in 2008, pandas has built-in data visualization capabilities; exploratory data

analysis functions; and support for file formats and languages that include CSV,

SQL, HTML and JSON. Additionally, it provides features such as intelligent data

alignment, integrated handling of missing data, flexible reshaping and pivoting of

data sets, data aggregation and transformation, and the ability to quickly merge and

join data sets, according to the pandas website.

The developers of pandas say their goal is to make it "the fundamental high-level

building block for doing practical, real-world data analysis in Python." Key code paths

in pandas are written in C or the Cython superset of Python to optimize its

performance. The library can be used with various kinds of analytical and statistical

data, including tabular, time series and labeled matrix data sets.

11. Python

Python is the most widely used programming language for data science and

machine learning and one of the most popular languages overall. The Python open

source project's website describes it as "an interpreted, object-oriented, high-level

https://www.techtarget.com/searchdatamanagement/definition/data-transformation

programming language with dynamic semantics," built-in data structures, and

dynamic typing and binding capabilities. The site also touts Python's simple syntax,

saying it's easy to learn and its emphasis on readability reduces the cost of program

maintenance.

The multipurpose language can be used for a wide range of tasks, including data

analysis, data visualization, AI, natural language processing and robotic process

automation. Developers can create web, mobile and desktop applications in Python

too. In addition to object-oriented programming, it supports procedural, functional

and other types plus extensions written in C or C++.

Python is used not only by data scientists, programmers and network engineers but

also by workers outside of computing disciplines, from accountants to

mathematicians and scientists. They are often drawn to its user-friendly nature.

Python 2.x and 3.x are both production-ready versions of the language, although

support for the 2.x line ended in 2020.

12. PyTorch

An open source framework used to build and train deep learning models based on

neural networks, PyTorch is touted by its proponents for supporting fast and flexible

experimentation as well as a seamless transition to production deployment. The

Python library was designed to be easier to use than Torch, a precursor machine

learning framework that's based on the Lua programming language. PyTorch also

provides more flexibility and speed than Torch, according to its creators.

First released publicly in 2017, PyTorch uses arraylike tensors to encode model

inputs, outputs and parameters. Its tensors are similar to the multidimensional arrays

supported by NumPy, but PyTorch adds built-in support for running models on

GPUs. NumPy arrays can be converted into tensors for processing in PyTorch and

vice versa.

The library includes various functions and techniques, including an automatic

differentiation package named torch.autograd, a module for building neural networks,

a TorchServe tool for deploying PyTorch models, and deployment support for iOS

and Android devices. In addition to the primary Python API, PyTorch offers a C++

https://www.techtarget.com/searchcio/Ultimate-guide-to-RPA-robotic-process-automation
https://www.techtarget.com/searchcio/Ultimate-guide-to-RPA-robotic-process-automation

API that can be used as a separate front-end interface or to create extensions for

Python applications.

13. R Programming

The R programming language is an open source environment designed for statistical

computing and graphics applications as well as data manipulation, analysis and

visualization. Many data scientists, academic researchers and statisticians use R to

retrieve, cleanse, analyze and present data, making it one of the most popular

languages for data science and advanced analytics.

The open source project is supported by The R Foundation, and thousands of user-

created packages with libraries of code that enhance R's functionality are available.

One example is ggplot2, a well-known package for creating graphics that's part of a

collection of R-based data science tools named tidyverse. In addition, multiple

vendors offer integrated development environments and commercial code libraries

for R.

R is an interpreted language like Python and has a reputation for being relatively

intuitive. It was created in the 1990s as an alternative version of S, a statistical

programming language that was developed in the 1970s. R's name is both a play on

S and a reference to the first letter of the names of its two creators.

14. SAS

SAS is an integrated software suite for statistical analysis, advanced analytics, BI

and data management. Developed and sold by software vendor SAS Institute Inc.,

the platform helps users integrate, cleanse, prepare and manipulate data. They can

then analyze it using different statistical and data science techniques. SAS can be

used for various tasks from basic BI and data visualization to risk management,

operational analytics, data mining, predictive analytics and machine learning.

The development of SAS started in 1966 at North Carolina State University. Use of

the technology began to grow in the early 1970s, and SAS Institute was founded in

1976 as an independent company. The software was initially built for use by

statisticians -- SAS was short for Statistical Analysis System. But over time, it was

https://www.techtarget.com/searchbusinessanalytics/feature/15-common-data-science-techniques-to-know-and-use
https://www.techtarget.com/searchbusinessanalytics/definition/data-mining

expanded to include a broad set of functionality and became one of the most widely

used analytics suites in both commercial enterprises and academia.

Development and marketing are now focused primarily on SAS Viya, a cloud-based

version of the platform that was launched in 2016 and redesigned to be cloud-native

in 2020.

15. Scikit-learn

Scikit-learn is an open source machine learning library for Python that's built on the

SciPy and NumPy scientific computing libraries as well as Matplotlib for plotting data.

It supports both supervised and unsupervised machine learning and includes

numerous algorithms and models, called estimators in scikit-learn parlance.

Additionally, it provides functionality for model fitting, selection and evaluation,

and data preprocessing and transformation.

Initially called scikits.learn, the library started as a Google Summer of Code project in

2007, and the first public release became available in 2010. The first part of its name

is short for "SciPy toolkit" and is also used by other SciPy add-on packages. Scikit-

learn primarily works on numeric data that's stored in NumPy arrays or SciPy sparse

matrices.

The library's suite of tools also enables various other tasks, such as data set loading

and the creation of workflow pipelines that combine data transformer objects and

estimators. But scikit-learn has some limits due to design constraints. For example, it

doesn't support deep learning, reinforcement learning or GPUs. The library's website

also says its developers "only consider well-established algorithms for inclusion."

16. SciPy

SciPy is another open source Python library that supports scientific computing uses.

Short for Scientific Python, it features a set of mathematical algorithms and high-

level commands and classes for data manipulation and visualization. It includes

more than a dozen subpackages that contain algorithms and utilities for functions

such as data optimization, integration and interpolation as well as algebraic

equations, differential equations, image processing and statistics.

https://www.techtarget.com/searchenterpriseai/feature/Comparing-supervised-vs-unsupervised-learning
https://www.techtarget.com/searchdatamanagement/definition/data-preprocessing
https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning

The SciPy library is built on top of NumPy and can operate on NumPy arrays. But

SciPy delivers additional array computing tools and provides specialized data

structures, including sparse matrices and K-dimensional trees, to extend beyond

NumPy's capabilities.

SciPy predates NumPy; it was created in 2001 by combining different add-on

modules built for the Numeric library that was one of NumPy's predecessors. Like

NumPy, SciPy uses compiled code to optimize performance. In its case, most of the

performance-critical parts of the library are written in C, C++ or Fortran.

17. TensorFlow

TensorFlow is an open source machine learning platform developed by Google that's

particularly popular for implementing deep learning neural networks. The platform

takes inputs in the form of tensors that are akin to NumPy multidimensional arrays

and then uses a graph structure to flow the data through a list of computational

operations specified by developers. It also offers an eager execution programming

environment that runs operations individually without graphs, which provides more

flexibility for research and debugging machine learning models.

Google made TensorFlow open source in 2015, and Release 1.0.0 became available

in 2017. TensorFlow uses Python as its core programming language and now

incorporates the Keras high-level API for building and training models. Alternatively,

a TensorFlow.js library enables model development in JavaScript, and custom

operations -- ops, for short -- can be built in C++.

The platform also includes a TensorFlow Extended module for end-to-end

deployment of production machine learning pipelines as well as a TensorFlow Lite

module for mobile and IoT devices. TensorFlow models can be trained and run on

CPUs, GPUs and Google's special-purpose Tensor Processing Units.

18. Weka

Weka is an open source workbench that provides a collection of machine learning

algorithms for use in data mining tasks. Weka's algorithms, called classifiers, can be

applied directly to data sets without any programming via a GUI or a command-line

https://towardsdatascience.com/eager-execution-vs-graph-execution-which-is-better-38162ea4dbf6
https://www.techtarget.com/searchenterpriseai/feature/5-types-of-machine-learning-algorithms-you-should-know
https://www.techtarget.com/searchenterpriseai/feature/5-types-of-machine-learning-algorithms-you-should-know

interface that offers additional functionality. They can also be implemented through a

Java API.

The workbench can be used for classification, clustering, regression, and association

rule mining applications. It also includes a set of data preprocessing and

visualization tools. In addition, Weka supports integration with R, Python, Spark and

other libraries like scikit-learn. For deep learning uses, an add-on package combines

it with the Eclipse Deeplearning4j library.

Weka is free software licensed under the GNU General Public License. It was

developed at the University of Waikato in New Zealand starting in 1992. An initial

version was rewritten in Java to create the current workbench, which was first

released in 1999. Weka stands for the Waikato Environment for Knowledge Analysis.

It is also the name of a flightless bird native to New Zealand that the technology's

developers say has "an inquisitive nature."

Data science and machine learning platforms

Commercially licensed platforms that provide integrated functionality for machine

learning, AI and other data science applications are also available from numerous

software vendors. The product offerings are diverse. They include machine learning

operations hubs, automated machine learning platforms and full-function analytics

suites, with some combining MLOps, AutoML and analytics capabilities. Many

platforms incorporate some of the data science tools listed above.

Matlab and SAS can also be counted among the data science platforms. Other

prominent platform options for data science teams include the following

technologies:

 Anaconda.

 Alteryx Analytics Automation Platform.

 Amazon SageMaker.

 Azure Machine Learning.

 BigML.

https://www.techtarget.com/searchbusinessanalytics/definition/association-rules-in-data-mining
https://www.techtarget.com/searchbusinessanalytics/definition/association-rules-in-data-mining
https://www.techtarget.com/searchenterpriseai/definition/automated-machine-learning-AutoML

 Databricks Lakehouse Platform.

 Dataiku.

 DataRobot AI Cloud.

 Domino Enterprise MLOps Platform.

 Google Cloud Vertex AI.

 H2O AI Cloud.

 IBM Watson Studio.

 Knime.

 Qubole.

 RapidMiner.

 Saturn Cloud.

 Tibco Data Science.

Some platforms are also available in free open source or community editions.

Examples include Dataiku and H2O. Knime combines an open source analytics

platform with a commercial Knime Hub software package that supports team-based

collaboration and workflow automation, deployment and management.

For More details: https://www.techtarget.com/searchbusinessanalytics/feature/15-

data-science-tools-to-consider-using

https://www.techtarget.com/searchbusinessanalytics/feature/15-data-science-tools-to-consider-using
https://www.techtarget.com/searchbusinessanalytics/feature/15-data-science-tools-to-consider-using

UNIT - II

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

By: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Science Tools and Techniques

Unit-II

R and R Studio Installation

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

 What is

& Purpose of

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

About R Programming...

 R is a programming language and free

software environment for statistical computing and

graphics supported by the R Foundation for Statistical

Computing. The R language is widely used

among statisticians and data miners for

developing statistical software and data analysis.

 R is an implementation of the S programming

language combined with lexical scoping semantics, inspired

by Scheme. S was created by John Chambers in 1976, while

at Bell Labs.

 R was created by Ross Ihaka and Robert Gentleman at

the University of Auckland in 1993.

 It is now available under GNU General Public License

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Features of R Programming

1. Open Source

 R is an open-source programming language. This means that anyone can

work with R without any need for a license or a fee. Furthermore, you can

contribute towards the development of R by customizing its packages,

developing new ones and resolving issues.

2. Exemplary Support for Data Wrangling

 R provides exemplary support for data wrangling. The packages like dplyr,

readr are capable of transforming messy data into a structured form.

3. The Array of Packages

 R has a vast array of packages. With over 10,000 packages in

the CRAN repository, the number is constantly growing. These packages

appeal to all the areas of industry.

4. Quality Plotting and Graphing

 R facilitates quality plotting and graphing. The popular libraries

like ggplot2 and plotly advocate for aesthetic and visually appealing graphs

that set R apart from other programming languages.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Benefits of R Programming...Contd..

5. Highly Compatible

 R is highly compatible and can be paired with many other programming

languages like C, C++, Java, and Python. It can also be integrated with

technologies like Hadoop and various other database management systems

as well.

6. Platform Independent

 R is a platform-independent language. It is a cross-platform programming

language, meaning that it can be run quite easily on Windows, Linux, and

Mac.

7. Eye-Catching Reports

 With packages like Shiny and Markdown, reporting the results of an analysis

is extremely easy with R. You can make reports with the data, plots and R

scripts embedded in them. You can even make interactive web apps that

allow the user to play with the results and the data.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Benefits of R Programming...Contd..

8. Machine Learning Operations

 R provides various facilities for carrying out machine learning operations

like classification, regression and also provides features for developing artificial

neural networks.

9. Statistics

 R is prominently known as the lingua franca of statistics. This is the main

reason as to why R is dominant among other programming languages for

developing statistical tools.

10. Continuously Growing

 R is a constantly evolving programming language. It is a state of the art

technology that provides updates whenever any new feature is added.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Pros and Cons of R Programming

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Install of ‘R’

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

R and R Studio Download & Installation

R-Studio
https://rstudio.com/

R

https://www.r-project.org/

https://rstudio.com/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

https://www.r-project.org/

 Click on CRAN (Comprehensive R Archive Network)

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

R’s CRAN

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Installation of R and RStudio

 To Install R:

 Open an internet browser and go to www.r-project.org.

 Click the "download R" link in the middle of the page under "Getting Started."

 Select a CRAN location (a mirror site) and click the corresponding link.

 Click on the "Download R for Windows" link at the top of the page.

 Click on the "install R for the first time" link at the top of the page.

 Click "Download R for Windows" and save the executable file somewhere on

your computer. Run the .exe file and follow the installation instructions.

 Now that R is installed, you need to download and install RStudio.

 To Install RStudio

 Go to www.rstudio.com and click on the "Download RStudio" button.

 Click on "Download RStudio Desktop."

 Click on the version recommended for your system, or the latest Windows

version, and save the executable file. Run the .exe file and follow the installation

instructions.

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.rstudio.com/

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

RStudio Editor / Interface

Console
Window

(Used to Run Commands)

Script

Window
(Used to Write Code)

Environment/

History Window
(Variable Values and to See History)

Files,Plots,

Packages, Help Etc
Files, Graphs, Packages Installed, Help etc

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R..

 You need to use various variables to store various

information.

 Variables are nothing but reserved memory locations to

store values.

 This means that, when you create a variable you reserve

some space in memory.

 We can store information of various data types like

character, wide character, integer, floating point, double

floating point, Boolean etc.

 Based on the data type of a variable, the operating system

allocates memory and decides what can be stored in the

reserved memory.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R..

 In contrast to other programming languages like C and java in

R, the variables are not declared as some data type. The

variables are assigned with R-Objects and the data type of the

R-object becomes the data type of the variable.

 There are many types of R-objects.

 The frequently used ones are −

 Vectors

 Lists

 Matrices

 Arrays

 Factors

 Data Frames

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R..

Data Type Out Comes Example

Logical TRUE or FALSE V <- TRUE

print (class (V))

Output:

[1] “Logical”

Numerical 1,2,3,912, 22.8 v <- 33.82

print(class(v))

Output:

[1] “numeric”

Integer 2L , 3L, 4L v <- 2L

print(class(v))

Output:

[1]: Integer

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R..

DATA TYPE

Complex

OUT COMES

3 + 2i

Example

v <- 2+5i

print(class(v))

Output:

[1] "complex"

Character 'a' , '"good", "TRUE",

'23.4'

v<-"TRUE"

print(class(v))

Output:

[1] "character"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Types in R..

Data Type Out Comes Example

Raw "Hello"

It is stored as 48 65 6c 6c 6f

v<-charToRaw("Hello")

print(class(v))

Output:

[1] "raw"

print(charToRaw('hello‟))

Output:

[1] 68 65 6c 6c 6f

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vectors in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vectors in R
 When you want to create vector with more than one

element, we have to use c() function which means to

combine the elements into a vector.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vectors in R

Creating a VECTOR IN R.

cars <- c(„maruthi‟,‟Honda‟,”Hyundai")

print(cars)

Get the class of the vector.

print(class(cars))

Example

OUTPUT:

[1] “maruthi" “Honda" “Hyundai"

[1] "character"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

List

 A list is an R-object which can contain many different

types of elements inside it like vectors, functions and

even another list inside it.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

LIST

Create a LIST in R.

list1 <- list(c(5,6,8),21.3,sin)

Print the list.

print(list1)

[[1]]

[1] 5 6 8

[[2]]

[1] 21.3

[[3]]

function (x) .Primitive("sin")

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices

 Matrices are the R objects in which the elements are

arranged in a two-dimensional rectangular layout.

 They contain elements of the same atomic types.

 Though we can create a matrix containing only

characters or only logical values, they are not of

much use.

 We use matrices containing numeric elements to be

used in mathematical calculations.

 A Matrix is created using the matrix() function.

 Syntax:
matrix(data, nrow, ncol, byrow, dimnames)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices & Parameters

Following are parameters used in Matrices with

Description:

 data is the input vector which becomes the data

elements of the matrix.

 nrow is the number of rows to be created.

 ncol is the number of columns to be created.

 byrow is a logical clue. If TRUE then the input vector

elements are arranged by row.

 dimname is the names assigned to the rows and

columns.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices- Example1

 Example

#Simple Matrix in R

M1 <- matrix(c(1:12), nrow = 4, byrow = TRUE)

print(M1)

Output:

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices- Example2

#Simple Matrix in R

M1 <- matrix(c(1:12), nrow = 4, byrow = FALSE)

print(M1)

Output:

 [,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices- Example3

 Example

 [col1] [col2] [col3]

[row1] 1 2 3

[row2] 4 5 6

[row3] 7 8 9

[row4] 10 11 12

Define the column and row names.

rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")

m4 <- matrix(c(1:12), nrow = 4, byrow = TRUE,

 dimnames = list(rownames, colnames))

print(m4)

output

Matrices- Example3

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Guess the outputs for these statements..

print(P[1,3])

print(P[4,2])

print(P[2,])

print(P[,3])

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Matrices – Example4

Create a matrix in R.

M1 = matrix(

c('a','a','b','c','b','a‟),

 nrow = 2, ncol = 3, byrow=TRUE)

print(M1)

 [,1] [,2] [,3]

[1,] "a" "a" "b"

[2,] "c" "b" "a"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Additional and Subtraction of Matrices

Create two 2x3 matrices.

matrix1 <- matrix(c(4, 2, -1, 6, 3, 5), nrow = 2)

print(matrix1)

matrix2 <- matrix(c(2, 3, 0, 4, 9, 7), nrow = 2)

print(matrix2)

Add the two matrices.

result <- matrix1 + matrix2

cat("Result of addition","\n")

print(result)

Subtract the two matrices

result <- matrix1 - matrix2

cat("Result of subtraction","\n")

print(result)

Here cat is useful for producing output

in user-defined functions

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Multiplication and Division of Matrices

Create two 2x3 matrices.

matrix1 <- matrix(c(4, 2, -1, 6, 3, 5), nrow = 2)

print(matrix1)

matrix2 <- matrix(c(2, 3, 0, 4, 9, 7), nrow = 2)

print(matrix2)

Multiplication the matrices.

result <- matrix1 * matrix2

cat("Result of Multiplication","\n")

print(result)

Division the matrices

result <- matrix1 / matrix2

cat("Result of Division","\n")

print(result)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Arrays in R

 Arrays are the R data objects which can store data in

more than two dimensions.

 Example − If we create an array of dimension

 (2, 3, 4) then it creates 4 rectangular matrices each

 with 2 rows and 3 columns.

 Arrays can store only data type.

 An array is created using the array() function. It

takes vectors as input and uses the values in

the dim parameter to create an array.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Example for Array in R

Create an array.

a <- array(c(„CSE‟,‟ECE'),dim = c(3,3,2))

print(a)

, , 1

 [,1] [,2] [,3]

[1,] "CSE" "ECE" "CSE"

[2,] "ECE" "CSE" "ECE"

[3,] "CSE" "ECE" "CSE"

, , 2

[,1] [,2] [,3]

[1,] "ECE" "CSE" "ECE"

[2,] "CSE" "ECE" "CSE"

[3,] "ECE" "CSE" "ECE"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

About Array and Matrices

 While matrices are confined to two dimensions,

arrays can be of any number of dimensions.

 The array function takes a dim attribute which

creates the required number of dimension.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Another Example of Array in R

Create two vectors of different lengths.

v1 <- c(5,9,3)

v2 <- c(10,11,12,13,14,15)

Take these vectors as input to the array.

result <- array(c(v1,v2),dim = c(3,3,2)) print(result)

, , 1

[,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

, , 2

[,1] [,2] [,3]

[1,] 5 10 13

[2,] 9 11 14

[3,] 3 12 15

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Factors in R

 Factors are the r-objects which are created using a

vector.

 It stores the vector along with the distinct values of

the elements in the vector as labels.

 The labels are always character irrespective of

whether it is numeric or character or Boolean etc. in

the input vector.

 They are useful in statistical modeling.

 Factors are created using the factor() function.

 The nlevels functions gives the count of levels.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Factors - Example

Create a vector.

car_models <- c(„benz‟,‟M800‟,‟M800‟,‟benz‟,‟rolls‟,‟M800‟,‟HONDA‟)

Create a factor object.

factor_cars <- factor(car_models)

Print the factor.

print(factor_cars)

print(nlevels(factor_cars)

[1] benz M800 M800 benz rolls M800 HONDA

Levels: benz M800 rolls HONDA

[1] 4

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Frames in R

 Data frames are tabular data objects.

 Unlike a matrix in data frame each column can

contain different modes of data.

 The first column can be numeric while the second

column can be character and third column can be

logical.

 It is a list of vectors of equal length.

 Data Frames are created using

the data.frame() function.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Frame Example

 # Create a data Frame

 MRCET_domains <- data.frame (

 branch = c(“CSE”, “ECE”, “EEE”, “IT”,“MECH”),

 gender = c(“Male”, “Female”)

 courses= c(“B.Tech”, “M.Tech”)

 duration = c(2, 4),

)

print(MRCET_domains)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Assigning Operators in R

x <- value

x <<- value

value -> x

value ->> x

x = value

R Supports the following ways of Assigning the values to ta Variable

• Note: The operators <- and = assign into the environment in which they are

evaluated.

• The operator <- can be used anywhere, whereas the operator = is only

allowed at the top level.

• The operators <<- and ->> are normally only used in functions

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Example..

Assignment using equal operator.

var.1 = c(0,1,2,3)

Assignment using leftward operator.

var.2 <- c(“mrcet",“autonomous college")

Assignment using rightward operator.

c(TRUE,1) -> var.3

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Comment in R

Comments starts with a #

Single Line Comment

(1) # This is a comment
 "Hello World! "
(2) "Hello World!" # This is a comment
(3) # "Good morning!"
 "Good night!"

Multiple Comment
This is a comment
written in
more than just one line
"Hello World!"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Creating Variables in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Creating Variables in R

Variables are containers for storing data values.

R does not have a command for declaring a variable.

A variable is created the moment you first assign a value to it.

To assign a value to a variable, use the <- sign.

To output (or print) the variable value, just type the variable

name.

Example:

a <- 8

age <- 22

college_name <- “mrcet”

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Print / Output Variables

 Compared to many other progamming languages, you do

not have to use a function to print/output variables in R. You

can just type the name of the variable.

Example:

>> college_name <- “mrcet”

>> college_name

output:

[1] mrcet

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

print() in R

 However, R does have a print() function available if you want to use it.

 This might be useful if you are familiar with other programming languages,

 such as Python, which often use a print() function to output variables.

Example-1:

>> college_name <- “mrcet”

>> print(college_name)

output:

[1] mrcet

for (x in 1:10) {
 print(x)
}

Example-2:

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Concatenate Elements

You can also concatenate, or join, two or more
elements, by using the paste() function.
To combine both text and a variable, R uses comma (,).

Example-1:

name1 <- "mrcet"

paste("Our College Name is", name1) Example-2:
FName <- "M V"

LName <- "kamal"

paste(FName, LName)
Output: M V kamal

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Few more examples…

 >>a <- 5

>>b <- 10

>>a + b

 [1]15

 --

 >>a <- 5

>>text <- "Some text"

>>a + text

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Multiple Variables

 R allows you to assign the same value to

multiple variables in one line:

Example:

>>a <- b <- c <- d <-10

>>a

>>b

>>c

>>d

Output:

[1]10

[2]10

[3]10

[4]10

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Rules for Variable Names..

A variable can have a short name (like x and y) or a more

descriptive name (age, carname, total_volume).

Rules for R variables are:

 A variable name must start with a letter and can be a

combination of letters, digits, period(.) and underscore(_).

 If it starts with period(.), it cannot be followed by a digit.

 A variable name cannot start with a number or underscore (_)

 Variable names are case-sensitive

 (Ex: name, Name and NAME are three different variables)

 Reserved words cannot be used as variables (TRUE, FALSE,

NULL, if...)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Rules for usage of Variables in R
Variable Name Validity Reason

var_name2. valid Has letters, numbers, dot and

underscore

var_name% Invalid Has the character '%'. Only dot(.) and

underscore allowed.

2var_name invalid Starts with a number

.var_name,

var.name

valid Can start with a dot(.) but the

dot(.)should not be followed by a

number.

.2var_name invalid The starting dot is followed by a number

making it invalid.

_var_name invalid Starts with _ which is not valid

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Examples (usage of variable names)

 # Legal variable names:
myvar <- “MRCET"

my_var <- "MRCET"

myVar <- "MRCET"

MYVAR <- “MRCET"

myvar2 <- “MRCET"

.myvar <- MRCET

 # Illegal variable names:
2myvar <- “MRCET"

my-var <- “MRCET"

my var <- “MRCET"

_my_var <- “MRCET"

my_v@ar <- “MRCET"

TRUE <- “MRCET"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Using CAT()

a<- "Hello"

cat("The class of var_x is ",class(a),"\n")

b<- 34.5

cat(" Now the class of var_x is ",class(b),"\n")

c<- 27L

cat(" Next the class of var_x becomes ",class(c),"\n")

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Finding Variables in R

 To know all the variables currently available in the

workspace we use the ls() function. Also the ls()

function can use patterns to match the variable

names.

 Syntax:

 >>print(ls())

 The output will be a sample output and depending on

what variables are declared in your environment.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Finding Variables in R contd..

 The ls() function can use patterns to match the

variable names.

 Syntax:

List the variables starting with the pattern "var".

 print(ls(pattern = "var"))

 print(ls(all.name = TRUE))

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

How to delete a variable in R

 Deleting Variables

 All the variables can be deleted by using

the rm() and ls() function together.

 rm(list = ls())

 print(ls())

rm(var1)

print(var1)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

R for Basic Math

 All common arithmetic operations and mathematical

functionality are ready to use at the console prompt.

 You can perform addition, subtraction, multiplication,

 and division with the symbols +, -, *, and /, respectively.

 You can create exponents (also referred to as powers or

indices) using ^, and you control the order of the

calculations in a single command using parentheses, ().

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Arithmetic

 R> 2+3

 [1] 5

 R> 14/6

 [1] 2.333333

 R> 14/6+5

 [1] 7.333333

 R> 14/(6+5)

 [1] 1.272727

 R> 3^2

 [1] 9

 R> 2^3

 [1] 8

R> sqrt(x=9)

[1] 3

R> sqrt(x=5.311)

[1] 2.304561

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

When using R, you’ll often find that you need to translate a complicated

arithmetic formula into code for evaluation

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Logarithms and Exponentials

 R> log(x=243,base=3)

 [1] 5

 R> log(x=20.08554)

 [1] 3

 R> exp(x=3)

 [1] 20.08554

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

E-Notation

 R> 2342151012900

 [1] 2.342151e+12

 R> 0.0000002533

 [1] 2.533e-07

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Operators in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Operators in R

 Operators are used to perform operations on

variables and values..

 R divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Miscellaneous operators



Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Arithmetic Operators in R

Operator Name Example1 Example2

+ Addition x + y 2+3

- Subtraction x - y 5-2

* Multiplication x * y 2*3

/ Division x / y 12/4

^ Exponent x ^ y 2^2

%% Modulus

(Remainder from division)

x %% y 24%%4

%/% Integer Division x%/%y 25%/%2

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Assignment Operators in R

 Assignment operators are used to assign
values to variables:

 Example: a<-2

 b<<-3

 “mrcet”->college_name

 “m800”->>carmodel

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Comparison Operators in R

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Logical Operators in R

Operator Description

& Element-wise Logical AND operator.

It returns TRUE if both elements are TRUE

&& Logical AND operator

Returns TRUE if both statements are TRUE

| Elementwise- Logical OR operator.

It returns TRUE if one of the statement is TRUE

|| Logical OR operator.

It returns TRUE if one of the statement is TRUE.

! Logical NOT

Returns FALSE if statement is TRUE

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Miscellaneous Operators in R

 Miscellaneous operators are used to
manipulate data:

Operator Description Example

: Creates a series of numbers in a

sequence

x <- 1:10

%in% Find out if an element belongs to

a vector

x %in% y

%*% Matrix Multiplication x <- Matrix1 %*%

Matrix2

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

LOOPS in R

 Loops can execute a block of code as long as a specified

condition is reached. In general, statements are executed

sequentially.

 Loops are handy because they save time, reduce errors, and

they make code more readable.

 The first statement in a function is executed first, followed

by the second, and so on.

 Programming languages provide various control structures

that allow for more complicated execution paths.

 R programming language provides the following kinds of

loop to handle looping requirements.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

LOOPS in R

 R Supports the following loops..

 while loop

 for loop

 repeat loop

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

LOOPS in R

while loop

 Repeats a statement or group of statements while a

given condition is true. It tests the condition before

executing the loop body.

for loop

 Like a while statement, except that it tests the condition

at the end of the loop body.

repeat loop

 The Repeat loop executes the same code again and

again until a stop condition is met.

 Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for – while – repeat Loops

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

 Syntax:

 Example-1

 for (x in 1:10) {

 print(x)

 }

With the for loop we can execute a set of statements, once for each

item in a vector, array, list, etc..

for (value in vector) {

statements

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

 Example-2 (list)

 Example-3 (vector)

 dice <- c(1, 2, 3, 4, 5, 6)
 for (x in dice) {
 print(x)
 }

With the for loop we can execute a set of statements, once for each

item in a vector, array, list, etc..

car_model <- list(“benz", “hyundai", “maruthi")

for (x in car_model) {

 print(x)

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

Break
With the break statement, we can stop the loop before it has

looped through all the items:

Example-4:

car_model <- list (“benz", “hyundai", “maruthi")

for (x in car_model) {

 if (x == “maruthi") {

 break

 }

 print(x)

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

Next
With the next statement, we can skip an iteration without

terminating the loop:

Example-5:

car_model <- list (“benz", “hyundai", “maruthi")

for (x in car_model) {

 if (x == “hyundai") {

 next

 }

 print(x)

}

When the loop passes “hyundai", it will skip it and continue to loop.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

If .. Else Combined with a For Loop

Example-6:

days <- 1:7

for (x in days) {
 if (x == 7) {
 print(paste("Today is", x, "Its Weekend!"))
 } else {
 print(paste("Today is", x, "Not Weekend"))
 }
}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

for Loop in R

Nested Loops
• A nested loop is a loop inside a loop.
• The "inner loop" will be executed one time for each iteration of the

"outer loop":

Example-7:

colors1 <- list("red", "blue", "while")

cars <- list("maruthi", "benz", "hyundai")
 for (x in colors1) {
 for (y in cars) {
 print(paste(x, y))
 }
}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

With the while loop we can execute a set of statements as

 long as a condition is TRUE

Syntax:
while (test_expression) {

statement

}

Example-1

#Print i as long as i is less than 6:

i <- 1

while (i < 6) {

 print(i)

 i <- i + 1

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

Break
With the break statement, we can stop the loop even if the

while condition is TRUE:

Example-2
using Break in while loop
Exit the loop if i is equal to 4.

i <- 1

while (i < 6) {

 print(i)

 i <- i + 1

 if (i == 4) {

 break

 }

}

Output
[1] 1

[1] 2

[1] 3

The loop will stop at 3 because we have chosen to finish the loop by
using the break statement when i is equal to 4 (i == 4).

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

Example-3

#using vector

v <- c("Hello","while loop")

cnt <- 2

while (cnt < 7) {

 print(v)

 cnt = cnt + 1

} [1] "Hello" "while loop"
[1] "Hello" "while loop"
[1] "Hello" "while loop"
[1] "Hello" "while loop"
[1] "Hello" "while loop"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

Next
With the next statement, we can skip an iteration without

terminating the loop:

Example-4
using next in while loop
Skip the value of 3
i <- 0

while (i < 6) {

 i <- i + 1

 if (i == 3) {

 next

 }

 print(i)

}

Output
[1] 1

[1] 2

[1] 3

The loop will stop at 3 because we have chosen to finish the loop by
using the break statement when i is equal to 4 (i == 4).

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

while Loop in R

if.. Else Combined with while loop

Example-5

days <- 1
while (days <= 6) {
 if (days < 6) {
 print("Not a Saturday")
 } else {
 print("its Saturday and weekend!")
 }
 days <- days + 1
}

If the loop passes the values ranging from 1 to 5, it prints "Not a
Saturday". Whenever it passes the value 6, it prints "its Saturday and
weekend!"

Output
[1] "Not a Saturday"
[1] "Not a Saturday"
[1] "Not a Saturday"
[1] "Not a Saturday"
[1] "Not a Saturday"
[1] "its Saturday and
weekend!"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Repeat & Break Loop in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

repeat Loop in R

The Repeat loop executes the same code again and again until a stop

condition is met.

Syntax:
repeat {

 commands

 if(condition) {

 break

 }

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

repeat Loop in R

v <- c("Hello","loop")

cnt <- 2

repeat {

 print(v)

 cnt <- cnt+1

 if(cnt > 5) {

 break

 }

}
Output

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

next Statement in R

 x = 1: 4

 for (i in x) {

 if (i == 2) {

 next

 }

 print(i)

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

 return Statement in R

 check <- function(x) {

 if (x > 0) {

 result <- "Positive"

 } else if (x < 0) {

result <- "Negative"

 } else {

 result <- "Zero"

 }

 return(result)

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

 Any value written within a pair of single quote (‘abc’) or
double quotes (‚abc‛) in R is treated as a string.

 Internally R stores every string within double quotes, even
when you create them with single quote.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

 Rules Applied in String Construction

 The quotes at the beginning and end of a string should be

both double quotes or both single quote. They can not be

mixed.

 Double quotes can be inserted into a string starting and

ending with single quote.

 Single quote can be inserted into a string starting and ending

with double quotes.

 Double quotes can not be inserted into a string starting and

ending with double quotes.

 Single quote can not be inserted into a string starting and

ending with single quote.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

 Assign a String to a Variable

 str <- “Welcome to MRCET"

 str # print the value of str

 Multiline Strings

str <- “Hello Welcome to MRCET. I am currently
pursuing II Yr B.Tech CSE and I am attending
Data Visualization subject which is advanced
subject in my curriculum."

str # print the value of str

cat(str) #check the output for this

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

String Length

 #To find the number of characters in a string

 str <- “Welcome to MRCET!"
nchar(str)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

 Check a String

 str <- "Welcome to MRCET!"

 grepl("Welcome", str)

 grepl("Hello", str)

 grepl("WELCOME", str)

 grepl("to", str)

 grepl("M", str)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Strings in R

 Combine Two Strings

str1 <- “MRCET"

str2 <- “Autonomous college"

paste(str1, str2)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

If, If-Else in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

If in R

 a <- 150

b <- 200

if (b > a) {

 print("b is greater than a")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

If using AND in R

 a <- 200

b <- 33

c <- 500

if (a > b & c > a){

 print("Both conditions are true")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

If using OR in R

 a <- 500

b <- 300

c <- 400

if (a > b | a > c){

 print("At least one of the conditions is
true")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

If ... Else in R

An "if statement" is written with the if keyword, and it is used to

specify a block of code to be executed if a condition is TRUE.

Syntax:
if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true.

 } else {

 // statement(s) will execute if the boolean expression is false.

}

Example:
a <- 200

b <- 33

if (b > a) {

 print("b is greater than a")

} else if (a == b) {

 print("a and b are equal")

} else {

 print("a is greater than b")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Else..If in R

The else if keyword is R's way of saying "if the previous
conditions were not true, then try this condition"

Example
a <- 33

b <- 33

if (b > a) {

 print("b is greater than a")

} else if (a == b) {

 print ("a and b are equal")

}

Syntax:

if (condition1) {

 expr1

 } else if (condition2) {

 expr2

 } else if (condition3) {

 expr3 }

 else {

 expr4

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Nested If Statements in R

 x <- 40

if (x > 10) {

 print("Above ten")

 if (x > 20) {

 print("and also above 20!")

 } else {

 print("but not above 20.")

 }

} else {

 print("below 10.")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Syllabus – Covered Topies

 Introduction to R- Features of R – Environment, How to run

R, R Sessions and Functions, Basic Math, Variables, Data Types,

Vectors, Conclusion, Advanced Data Structures, Data Frames,

Lists, Matrices, Arrays, Classes, R Programming Structures,

Control Statements, Loops, - Looping Over Nonvector Sets,-

If-Else, Arithmetic and Boolean Operators and values, Default

Values for Argument, Return Values, Functions are Objects,

Recursion,

 Basic Functions - R help functions - R Data Structures. Vectors:

Definition- Declaration - Generating - Indexing - Naming -

Adding & Removing elements - Operations on Vectors -

Recycling - Special Operators - Vectorized if- then else-Vector

Equality – Functions for vectors - Missing values - NULL values

- Filtering & Subsetting.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Repetition

 R> rep(x=1,times=4)

 [1] 1 1 1 1

 R> rep(x=c(3,62,8.3),times=3)

 [1] 3.0 62.0 8.3 3.0 62.0 8.3 3.0 62.0 8.3

 R> rep(x=c(3,62,8.3),each=2)

 [1] 3.0 3.0 62.0 62.0 8.3 8.3

 R> rep(x=c(3,62,8.3),times=3,each=2)

 [1] 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0 62.0 8.3 8.3

 3.0 3.0 62.0 62.0 8.3 8.3

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Sorting

Execute & Check Result…

 R> sort(x=c(2.5,-1,-10,3.44), decreasing=FALSE)

 R> sort(x=c(2.5,-1,-10,3.44), decreasing=TRUE)

 R> A seq(from=4.3,to=5.5,length.out=8)

 R> A

 R> bar <- sort(x=A,decreasing=TRUE)

 R> bar

 R> sort(x=c(foo,bar),decreasing=FALSE)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Finding a Vector Length with length

 R> length(x=c(3,2,8,1))

 [1] 4

 R> length(x=5:13)

 [1] 9

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Functions in R Programming
 A function in R is a set of statements or commands that organzied

together to perform a specific task.

 R provides a wide range of functions for obtaining summary

statistics.

 R Supports built-in and User-Defined Functions

 In R, a function which is treated as object and able to pass control

to the function, along with arguments that may be necessary for the

function to accomplish the actions.

 KEYWORD:

 function(arg1,agr2,arg3.....)

 Syntax:

 Function_name function (arg1, arg2, agr3..) {

 body_of_function

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function Example:

 my_function <- function() {

 # create a function with the name my_function
 print("Hello MRCET!")

}

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Functions in R Programming

 Components in “Function” are

 Function_Name

 Arguments

 Function_body

 Return_Value

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Built-In Function in R

 Many built in functions are available in R-Programming.

 Example

print(sum(20:30))

print(mean(5:30))

print(sqrt(2))

print(abs(-5))

print(seq(1:10))

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

User-Defined Function in R

 As like “C”, User-Defined function is nothing but we can

create our own function in R.

 Example

#crate a function to print squares of each number in sequence

A  function(a) {

 for(i in 1 : a) {

 b i ^ 2

 print(b)

 }

}

argument calling to function

A(6)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function in R

Calling a Function with Argument Values (by position and by name)

Create a function with arguments

Afunction(a,b,c) {

result  a * b + c

print(result)

}

Call the function by position of arguments

 A(2,3,5)

Call the function by names of the arguments

 A(a = 3, b = 2, c = 5)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function in R

Calling a Function with Default Argument

Create a function with arguments.

Example

A function(a = 3, b = 6) {

result  a * b

print(result)

}

Call the function without giving any argument.

A()

Call the function with giving new values of the argument.

A(4 , 8)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function in R

 Lazy Evaluation of Function in “R”

 Arguments to functions are evaluated lazily, which means so they are

evaluated only when needed by the function body

Example

 # Create a function with arguments.

 A function(a, b) {

 print(a^2)

 print(a)

 print(b)

 }

Evaluate the function without supplying one of the arguments.

 A(4)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Statistics in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Statistics in R

 All the data which is gathered for any analysis is useful

when it is properly represented so that it is easily

understandable by everyone and helps in proper decision

making.

 After we carry out the data analysis, we delineate its

summary so as to understand it in a much better way.

 This is known as summarizing the data.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Statistics in R

We can summarize our data in R as follows:

 Descriptive/Summary Statistics – With the help of

descriptive statistics, we can represent the information

about our datasets. They also form the platform for

carrying out complex computations as well as analysis.

Therefore, even though they are developed with simple

methods, they play a crucial role in the process of

analysis.

 Tabulation – Representing the data analyzed in tabular

form for easy understanding.

 Graphical – It is a way to represent data graphically.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Statistics in R

Statistics is the science of analyzing, reviewing and
conclude data.

Some basic statistical methods:

 Mean, Median and Mode Method

 Finding Minimum, Maximum & Range Values

 Percentiles Calculation

 Variance and Standard Deviation (SD)

 Finding Covariance and Correlation

 Interquartile Range (IQR)

 Probability Distributions Method

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Statistics in R

Some R functions for computing descriptive statistics:

Description R function

 Mean  mean()

 Standard deviation  sd()

 Variance  var()

 Minimum  min()

 Maximum  max()

 Median  median()

 Range of values

 (minimum and maximum)  range()

 Sample quantiles  quantile()

 Generic function  summary()

 Interquartile range  IQR()

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Let’s..do…

 Consider the Popular Built-in Dataset of R

 “mtcars” (Motor Trend Car Road Tests)

 # Print the mtcars data set
>>mtcars

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

mtcars

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

?mtcars

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Use the dim() function to find the dimensions of the dataset.
Use names() function to view the names of the variables:

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Some Statistical Commands with Examples…

To see the structure of dataset

 str(data_set)

 Example: str(mtcars) or str(iris)

To see the minimum values of the data element

 min(data_set$attribute_name)

 Example: min(mtcars$disp)

To see the maximum values of the data element

 max(mtcars$disp)

To see the Range values of the data element

 range(mtcars$mpg)

m

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Few Experiments in Descriptive Statistics using R..

#Range
 range1<-range(mtcars$mpg)
 range1
 [1] 10.4 33.9
 range1[1]
 [1] 10.4

#find the Range
max(mtcars$mpg) - min(mtcars$mpg)

#Using Function to find Range
range2 <- function(x) {
 range <- max(x) - min(x)
 return(range)
 }
> > range2(mtcars + $mpg)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

#To display the only row names in a dataset
>rownames(mtcars)
#To display the only column names in a dataset
>colnames(mtcars)

#To display...

>which.max(mtcars$mpg)
#To display...

>Which.min(mtcars$cyl)
--

#To Find MEAN for an attribute in a dataset

>mean(mtcars$mpg)
#if there is at least one missing value in your dataset,
Use the following way to compute the mean with the NA excluded

> mean(mtcars$mpg,na.rm = TRUE)
#To truncate the mean value for an attribute in a dataset

>mean(mtcars$mpg,trim = 0.10)

>mean(mtcars$mpg,rrim =0.10)

Few Experiments in Descriptive Statistics using R..

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

#To Find MEDIAN for an attribute in a dataset

>median(mtcars$mpg)
or
>median(mtcars$mpg, na.rm = FALSE)
Or
>quantile(mtcars$mpg,0.5)
#First and third quartile

 ???
How to calculate IQR
--

>rownames(mtcars)[which.max(mtcars$mpg)]
>sort(mtcars$cyl)
>table(mtcars$cyl)

Few Experiments in Descriptive Statistics using R..

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

How to calculate MODE

> unique(mtcars$cyl)

#Alternative Method to find the MODE for a data_element

>get_mode <- function(a) {
 unique1 <- unique(a)
 unique1[which.max(tabulate(match(a,unique1)))]
 }

>a<-mtcars$cyl
>mode_result<-get_mode(a)
> print(mode_result)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

What is the solution for this…

(1)
>head(mtcars$)

(2)
>names(sort(table(mtcars$cyl)))

(3)

>data <- data.frame(x1 = 1:10,

 x2 = letters[1:10],

 x3 = "x")

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Percentiles Calculation in R

Percentiles are used in statistics to give you a

number that describes the value that a given percent

of the values are lower than.

> quantile(mtcars$cyl,c(0.5))

If you run the quantile() function without specifying

the c() parameter, you will get the percentiles of 0, 25,

50, 75 and 100:

> quantile(mtcars$cyl)

 Output:
0% 25% 50% 75% 100%
4 4 6 8 8

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Quartiles

 Quartiles are data divided into four parts, when sorted in an

ascending order:

 The value of the first quartile cuts off the first 25% of the data

 The value of the second quartile cuts off the first 50% of the data

 The value of the third quartile cuts off the first 75% of the data

 The value of the fourth quartile cuts off the 100% of the data

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Standard Deviation and Variance

The standard deviation is computed with the sd() function:

#To Calculate the Standard Deviation
>sd(mtcars$mpg)

The variance is computed with the var() function:

#To Calculate the Variance
>var(mtcars$mpg)

Few Experiments in Descriptive Statistics using R..

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

By: M V Kamal | Associate Professor | CSE Dept. | MRCET

Few Built-In Function
in
R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

About Function in R

 A function is a block of code which only runs when it is

called.

 You can pass data, known as parameters, into a function.

 A function can return data as a result.

 To create a function, use the function() keyword:

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Function Components

The different parts of a function are −

 Function Name − This is the actual name of the function. It

is stored in R environment as an object with this name.

 Arguments − An argument is a placeholder. When a function

is invoked, you pass a value to the argument. Arguments are

optional; that is, a function may contain no arguments. Also

arguments can have default values.

 Function Body − The function body contains a collection of

statements that defines what the function does.

 Return Value − The return value of a function is the last

expression in the function body to be evaluated.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Syntax:

 function_name <- function(arg_1, arg_2, ...) {

 Function body

 }

Example:

my_function <- function() {

create a function with the name my_function

 print(“Welcome to MRCET!")

}

my_function

To call the function and to print the result (Function calling)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

User-Defined Function

 # Create a function to print squares of numbers in

sequence.

 new.function <- function(a) {

 for(i in 1:a) {

 b <- i^2

 print(b)

 }

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Number of Arguments

 By default, a function must be called with the correct

number of arguments…

Example

 my_function <- function(fname, lname) {

 paste(fname, lname)

}

my_function(“Emerging", “Technologies")

 Note: If you try to call the function with 1 or 3

arguments, you will get an error:

 *Check out the above statement is correct or not

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Default Parameter Value

my_function <- function(branch = "CSE") {

 paste("I am from", branch)

}

 my_function("Cyber_Security")

 my_function("Data Science")

 my_function() # will get the default value, which is CSE

 my_function("IoT")

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Return Values

Example for Return Values

 my_function <- function(x) {

 return (3 * x)

}

print(my_function(2))

print(my_function(3))

print(my_function(4))

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Built-in Functions in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Built-in Functions in R (Contd)

Example

 vector <- c(3, 5, 2, 3, 1, 4)

 print(min(vector))

 print(mean(vector)) or print(mean(25:82))

 print(median(vector))

 print(sum(vector)) or print(sum(41:68))

 print(range(vector))

 print(str(vector))

 print(length(vector))

 print(sort(vector, decreasing=TRUE)) print(exists('vector'))

 print(seq(32,44))

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Functions for obtaining summary

statistics.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Functions in R Programming

 R provides a wide range of functions for obtaining summary

statistics.

 apply(), lapply(), sapply(), tapply() Function

 apply() takes Data frame or matrix as an input and gives

output in vector, list or array.

 apply() Function is primarily used to avoid explicit uses of loop

constructs. It is the most basic of all collections can be used

over a matrice.

 Syntax: apply(X, MARGIN, FUN)

 Here MARGIN is here the manipulation is performed on

rows or column or both..

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

apply(X, MARGIN, FUN)

Where…

x: an array or matrix

MARGIN: take a value or range between 1 and 2 to define

 where to apply the function:

MARGIN=1: The manipulation is performed on rows

MARGIN=2`: the manipulation is performed on columns

MARGIN=c(1,2)` the manipulation is performed on rows and columns

FUN: tells which function to apply. Built functions like mean, median,

 sum, min, max and even user-defined functions can be applied>

 apply()

 sapply()

The above two will be called as “matrix function” in R

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

apply() function

 apply () function

Example

matrixM matrix(C(1:10),nrow=5, ncol=6)

print(matrixM)

a apply(matrixM, 2, sum)

print(a)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

lapply() function

 lapply() function is useful for performing operations on

list objects and returns a list object of same length of

original set.

 lappy() returns a list of the similar length as input list

object, each element of which is the result of applying

FUN to the corresponding element of list.

 lapply() takes list, vector or data frame as input and gives

output in list.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

lapply() function

 lapply(X, FUN)

 Arguments:

 Here „X‟ is a vector or an object

 and „FUN‟ is a Function applied to each element of X

*

Note: lapply() function does not need MARGIN.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

lapply() function

>car_models c("MARUTHI","HONDA","HYUNDAI","BENZ")

>car_models_lower lapply(car_models, tolower)

>car_models_lower

[[1]]

[1] "maruthi"

[[2]]

[1] "honda"

[[3]]

[1] "hyundai"

[[4]]

[1] "benz"

>str(car_models_lower)
List of 4

$: chr "maruthi"

$: chr "honda"

$: chr "hyundai"

$: chr "benz"

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

unlist()

 We can use unlist() to convert the list into a vector.

Example:

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

sapply() function

 sapply() function takes list, vector or data frame as input

and gives output in vector or matrix.

 It is useful for operations on list objects and returns a list

object of same length of original set.

 sapply() function does the same job as lapply() function

but returns a vector.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

sapply() function

 sapply(X, FUN)

 Arguments:

 Here „X‟ is a vector or an object

 Here „FUN‟ is a Function applied to each element of X

Example

Consider “cars” dataset.

Check their attribute and values of that “cars” dataset and we can measure

the minimum speed and stopping distances..

A cars

lcarslapply(A, min)

scarssapply(A,min)

print(lcars)

print(scars)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

sapply()

We can use a user built-in

function into lapply() or

sapply(). We create a

function named avg to

compute the average of

the minimum and

maximum of the vector.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Summary – apply, lapply() and sapply()

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

tapply() function

 tapply() computes a measure (mean, median, min, max,

etc..) or a function for each factor variable in a vector.

 It is a very useful function that lets you create a subset of

a vector and then apply some functions to each of

the subset.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

tapply() function

 Syntax:

tapply(X, INDEX, FUN = NULL)

Arguments:

„X‟ is an object, usually a vector

„INDEX‟ is a list containing factor

„FUN‟ is function applied to each element of x

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

tapply() function

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Descriptive Data analysis using R

 Datasets link

https://vincentarelbundock.github.io

/Rdatasets/datasets.html

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Recursive Function

 In a recursive function (recursion), function calls itself. In

this, to solve the problems, we break the programs into

smaller sub-programs.

 For example:

 4! = 4*3*2*1 = 24

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Recursive Function (contd..)

 tri_recursion <- function(k) {

 if (k > 0) {

 result <- k + tri_recursion(k - 1)

 print(result)

 } else {

 result = 0

 return(result)

 }

}

tri_recursion(6)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Find the Factorial of a given number in R

 Factorial <- function(N)

 {

 if (N == 0)

 return(1)

 else

 return(N * Factorial (N-1))

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Finding factorial of a number using the recursive

function.

 recurive_factorial <- function(n) {

 if(n <= 1) {

 return(1)

 } else {

 return(n * recurive_factorial(n-1))

 }

 }

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

 Let‟s find out the solution for the below program…

Finding sum of series 1²+2²+3²+…..+n² using the

recursive function

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Arguments

In

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Arguments in R

 Arguments are always named when you define a function.

 When you call a function, you do not have to specify the

name of the argument.

 Arguments are optional; you do not have to specify a

value for them.

 They can have a default value, which is used if you do not

specify a value for that argument yourself.

 You can use as many arguments as you like, there is no

limit to the number of arguments.

 An argument list comprises of comma-separated values

that contain the various formal arguments.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Syllabus – Covered Topies

 Introduction to R- Features of R – Environment, How to run

R, R Sessions and Functions, Basic Math, Variables, Data Types,

Vectors, Conclusion, Advanced Data Structures, Data Frames,

Lists, Matrices, Arrays, Classes, R Programming Structures,

Control Statements, Loops, - Looping Over Nonvector Sets,-

If-Else, Arithmetic and Boolean Operators and values, Default

Values for Argument, Return Values, Functions are Objects,

Recursion,

 Basic Functions - R help functions - R Data Structures. Vectors:

Definition- Declaration - Generating - Indexing - Naming -

Adding & Removing elements - Operations on Vectors -

Recycling - Special Operators - Vectorized if- then else-Vector

Equality – Functions for vectors - Missing values - NULL values

- Filtering & Subsetting.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

End of Unit-II (Part-A)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

By: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Science Tools and Techniques

Unit-II

R Functions (Part-B)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Syllabus – Covered Topics

 Introduction to R- Features of R – Environment, How to run R, R Sessions

and Functions, Basic Math, Variables, Data Types, Vectors, Conclusion,

Advanced Data Structures, Data Frames, Lists, Matrices, Arrays, Classes, R

Programming Structures, Control Statements, Loops, - Looping Over

Nonvector Sets,- If-Else, Arithmetic and Boolean Operators and values,

Default Values for Argument, Return Values, Functions are Objects,

Recursion.

 Basic Functions - R help functions - R Data Structures. Vectors:

Definition- Declaration - Generating - Indexing - Naming -

Adding & Removing elements - Operations on Vectors -

Recycling - Special Operators - Vectorized if- then else-Vector

Equality – Functions for vectors - Missing values - NULL values

- Filtering & Subsetting.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

The help() function in R

 The help() function in R is used to get help on any

given R function passed to it.

 Or

 The help() function and ? help operator in R provide

access to the documentation pages for R functions, data

sets, and other objects, both for packages in the standard

R distribution and for contributed packages.

 To access documentation for the standard lm (linear

model) function, for example, enter the

command help(lm) or help("lm"), or ?lm or ?"lm" (i.e., the

quotes are optional).

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

The help() function in R (contd..)

 You can learn more about help() function

 https://www.r-project.org/help.html

https://www.r-project.org/help.html
https://www.r-project.org/help.html
https://www.r-project.org/help.html

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

 To access help for a function in a package

that’s not currently loaded, specify in addition the name of

the package:

For example, to obtain documentation for the rlm() (robust linear

model) function in the MASS package, help(rlm, package="MASS").

The help() function in R (contd..)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

The help() function in R (contd..)

 The help() function and ? operator are useful only if you

already know the name of the function that you wish to use.

 There are also facilities in the standard R distribution for

discovering functions and other objects.

 The following functions cast a progressively wider net. Use the

help system to obtain complete documentation for these

functions: for example,

 ?apropos

Note: The apropos() function searches for objects, including functions, directly

accessible in the current R session that have names that include a specified

character string

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

help.search() and ??

 The help.search() function scans the documentation for

packages installed in your library.

 The (first) argument to help.search() is a character string

or regular expression.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vignettes and Code Demonstrations:
browseVignettes(), vignette() and demo()

 Many packages include vignettes, which are discursive

documents meant to illustrate and explain facilities in the

package.

 You can discover vignettes by accessing the help page for a

package, or via the browseVignettes() function.

 The command browseVignettes() opens a list of vignettes

from all of your installed packages in your browser.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

RSiteSearch()

 RSiteSearch() uses an internet search engine to search for

information in function help pages and vignettes for all CRAN

packages, and in CRAN task views

 Unlike the apropos() and help.search() functions, RSiteSearch()

 requires an active internet connection and doesn’t employ

 regular expressions.

 Braces may be used to specify multi-word terms; otherwise

matches for individual words are included.

 For example, RSiteSearch("{generalized linear model}")

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

findfn() and ???

 findfn() and ??? in the sos package, which is not part of the

standard R distribution but is available on CRAN, provide

an alternative interface to RSiteSearch().

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

help.start()

 help.start() starts and displays a hypertext based version

of R’s online documentation in your default browser that

provides links to locally installed versions of the R

manuals, a listing of your currently installed packages and

other documentation resources.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vector &

Vector Indexing

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vector & Vector Indexing

 Know about Vector and Vector Indexing through below

link..

 https://thomasleeper.com/Rcourse/Tutorials/vectorindexin

g.html

 & Refer the PDF Material (File Name: Vector in R_Unit_II (Part-B).pdf)

https://thomasleeper.com/Rcourse/Tutorials/vectorindexing.html
https://thomasleeper.com/Rcourse/Tutorials/vectorindexing.html

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

A Vectorized if-then-else:

The ifelse() Function

 In addition to the usual if-then-else construct found in most

languages, R also includes a vectorized version,

the ifelse() function.

 ifelse(b,u,v)

 where b is a Boolean vector, and u and v are vectors.

 Example

Vector Equality

Unit-II (Part-B)

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vector Equality

 Suppose we wish to test whether two vectors are equal.

The naive approach, using ==, won’t work.

 Example-1 Example-2

 > x <- 1:3

 > y <- c(1,3,4)

 > x == y

 [1] TRUE FALSE FALSE

In fact, == is a vectorized function. The expression x == y applies

the function ==() to the elements of x and y. yielding a vector of

Boolean values.

 i <- 2

 > "= ="(i,2)
 [1] TRUE

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

all()

 > x <- 1:3

 > y <- c(1,3,4)

 > x == y

 [1] TRUE FALSE FALSE

 all(x == y)

 [1] FALSE

Applying all() to the result of == asks whether all of the ...

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Check if Two Objects are Equal in R

Programming – setequal() Function

 setequal() function in R Language is used to check if two

objects are equal.

 This function takes two objects like Vectors, dataframes,

etc. as arguments and results in TRUE or FALSE, if the

Objects are equal or not.
 # R program to illustrate

 # the use of setequal() function

 x1 <- c(1, 2, 3, 4, 5, 6) # Vector 1

 x2 <- c(1:6) # Vector 2

 x3 <- c(2, 3, 4, 5, 6) # Vector 3

 # Calling setequal() Function

 setequal(x1, x2)

 setequal(x1, x3)

Output:
[1] TRUE
[1] FALSE

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Example-2 for setequal

R program to illustrate the use of setequal() function

Dataframe-1
data_x <- data.frame(x1 = c(5, 6, 7),
 x2 = c(2, 2, 2))

Dataframe-2
data_y <- data.frame(y1 = c(5, 6, 7),
 y2 = c(2, 2, 2))

Calling setequal() Function
setequal(data_x, data_y)

Output:
[1] TRUE

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Functions for vectors

 Vector functions under R the ones that allow us to either

create or manipulate the data structure called vectors.

 These functions most of the time take a vector/s as an

argument to generate an output.

 rep() function

 seq() function

 is.vector() function

 as.vector() function

 any() function

 all() function

 lapply() function

 sapply() function

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Vector Recycling in R

 We can see vector recycling, when we perform some

kind of operations like addition, subtraction. . . .etc on two

vectors of unequal length.

 The vector with a small length will be repeated as long as

the operation completes on the longer vector.

 If we perform an addition operation on a vector of equal

length the first value of vector1 is added with the first

value of vector 2 like that.

 The repetition of small length vector as long as

completion of operation on long length vector is known

as vector recycling.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

For Example

creating vector with 1 to 5 values
> v1<-c(1:5)
> v1
 [1] 1 2 3 4 5

creating vector with 1:2 values
> v2<-c(1:2)

 v2
[1] 1 2

adding vector1 and vector2

 print(v1+v2)
[1] 2 4 4 6 6
Warning message: In v1 + v2 : longer
object length is not a multiple of
shorter object length

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Missing values

 Dealing with Missing Values in R is important and simple.

 A common task in data analysis is dealing with missing

values. In R, missing values are often represented

by NA or some other value that represents missing

values

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Missing values (contd..)

 A common task in data analysis is dealing with missing

values. In R, missing values are often represented

by NA or some other value that represents missing

values.

 To identify missing values use is.na() which returns a

logical vector with TRUE in the element locations that

contain missing values represented by NA. is.na() will

work on vectors, lists, matrices, and data frames.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

is.na() validates the blank

position as true

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

which()

 x <- c(1:4, NA, 6:7, NA)

 > x

 [1] 1 2 3 4 NA 6 7 NA

 > # which (is.na(x) is to identify location of 'NA' in vector

 > which(is.na(x))

 [1] 5 8

Vector in R | DSTT_Unit_II (Part-B)
 (Compiled by Dr MVK)

Vector is a basic data structure in R. It contains element of the same type. The
data types can be logical, integer, double, character, complex or raw.
A vector’s type can be checked with the typeof() function.
Another important property of a vector is its length. This is the number of
elements in the vector and can be checked with the function length().

How to Create Vector in R?
Vectors are generally created using the c() function.

Since, a vector must have elements of the same type, this function will try and
coerce elements to the same type, if they are different.
Coercion is from lower to higher types from logical to integer to double to
character.

> x <- c(1, 5, 4, 9, 0)
> typeof(x)
[1] "double"
> length(x)
[1] 5
> x <- c(1, 5.4, TRUE, "hello")
> x
[1] "1" "5.4" "TRUE" "hello"
> typeof(x)
[1] "character"

If we want to create a vector of consecutive numbers, the : operator is very
helpful.

Example 1: Creating a vector using : operator

> x <- 1:7; x
[1] 1 2 3 4 5 6 7
> y <- 2:-2; y
[1] 2 1 0 -1 -2

More complex sequences can be created using the seq() function, like
defining number of points in an interval, or the step size.

Example 2: Creating a vector using seq() function

> seq(1, 3, by=0.2) # specify step size
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
> seq(1, 5, length.out=4) # specify length of the vector
[1] 1.000000 2.333333 3.666667 5.000000

How to access Elements of a Vector?
Elements of a vector can be accessed using vector indexing. The vector used
for indexing can be logical, integer or character vector.

Using integer vector as index
Vector index in R starts from 1, unlike most programming languages where
index start from 0.
We can use a vector of integers as index to access specific elements.
We can also use negative integers to return all elements except that those
specified.
But we cannot mix positive and negative integers while indexing and real
numbers, if used, are truncated to integers.

> x
[1] 0 2 4 6 8 10
> x[3] # access 3rd element
[1] 4
> x[c(2, 4)] # access 2nd and 4th element
[1] 2 6
> x[-1] # access all but 1st element
[1] 2 4 6 8 10
> x[c(2, -4)] # cannot mix positive and negative integers
Error in x[c(2, -4)] : only 0's may be mixed with negative subscripts
> x[c(2.4, 3.54)] # real numbers are truncated to integers
[1] 2 4

Using logical vector as index
When we use a logical vector for indexing, the position where the logical
vector is TRUE is returned.
This useful feature helps us in filtering of vector as shown below.

> x[c(TRUE, FALSE, FALSE, TRUE)]
[1] -3 3
> x[x < 0] # filtering vectors based on conditions
[1] -3 -1
> x[x > 0]
[1] 3

In the above example, the expression x>0 will yield a logical vector (FALSE,
FALSE, FALSE, TRUE) which is then used for indexing.

Using character vector as index
This type of indexing is useful when dealing with named vectors. We can
name each elements of a vector.

> x <- c("first"=3, "second"=0, "third"=9)
> names(x)
[1] "first" "second" "third"
> x["second"]
second
0
> x[c("first", "third")]
first third
3 9

How to modify a vector in R?
We can modify a vector using the assignment operator.
We can use the techniques discussed above to access specific elements and
modify them.
If we want to truncate the elements, we can use reassignments.

> x
[1] -3 -2 -1 0 1 2
> x[2] <- 0; x # modify 2nd element
[1] -3 0 -1 0 1 2
> x[x<0] <- 5; x # modify elements less than 0
[1] 5 0 5 0 1 2
> x <- x[1:4]; x # truncate x to first 4 elements
[1] 5 0 5 0

How to delete a Vector?
We can delete a vector by simply assigning a NULL to it.

> x
[1] -3 -2 -1 0 1 2
> x <- NULL
> x
NULL
> x[4]
NULL

How to Sort a Vector..?

To sort items in a vector alphabetically or numerically, use
the sort() function:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")
numbers <- c(13, 3, 5, 7, 20, 2)

sort(fruits) # Sort a string
sort(numbers) # Sort numbers

How to Access Vectors

You can access the vector items by referring to its index number inside

brackets []. The first item has index 1, the second item has index 2, and so

on:

Example

fruits <- c("banana", "apple", "orange")

Access the first item (banana)
fruits[1]

You can also access multiple elements by referring to different index

positions with the c() function:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")

Access the first and third item (banana and orange)
fruits[c(1, 3)]

You can also use negative index numbers to access all items except the ones

specified:

Example

fruits <- c("banana", "apple", "orange", "mango", "lemon")

Access all items except for the first item
fruits[c(-1)]

How to Repeat Vectors

To repeat vectors, use the rep() function:

Example

Repeat each value:

repeat_each <- rep(c(1,2,3), each = 3)
repeat_each

Example

Repeat the sequence of the vector:

repeat_times <- rep(c(1,2,3), times = 3)
repeat_times

Example

Repeat each value independently:

repeat_indepent <- rep(c(1,2,3), times = c(5,2,1))
repeat_indepent

Generating Sequenced Vectors

One of the examples on top, showed you how to create a vector with
numerical values in a sequence with the : operator:

Example

numbers <- 1:10
numbers

To make bigger or smaller steps in a sequence, use the seq() function:

Example

numbers <- seq(from = 0, to = 100, by = 20)
numbers

Note: The seq() function has three parameters: from is where the sequence

starts, to is where the sequence stops, and by is the interval of the sequence.

UNIT - III

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

By: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Science Tools and Techniques
Unit-III

Data Analytics with Excel

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Syllabus

 Introduction: Data Analysis, Excel Data analysis. Working with

range names. Tables. Cleaning Data. Conditional formatting,

Sorting, Advanced Filtering, Lookup functions, Pivot tables,

Data Visualization, Data Validation. Understanding Analysis tool

pack: Anova, correlation, covariance, moving average,

descriptive statistics, exponential smoothing, fourier Analysis,

Random number generation, sampling, t-test, f-test, and

regression

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Analysis

What….?

Why….?

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

What is Data Analysis

 Businesses today need every edge and advantage they can

get.

 Data analysis is the process of cleaning, changing, and

processing raw data and extracting actionable, relevant

information that helps businesses make informed

decisions.

 The procedure helps reduce the risks inherent in

decision-making by providing useful insights and statistics,

often presented in charts, images, tables, and graphs.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

What is Data Analysis

 Data Analysis is the process of systematically applying

statistical and/or logical techniques to describe and

illustrate, condense and recap, and evaluate data.

 An essential component of ensuring data integrity is the

accurate and appropriate analysis of research findings.

 Data analysis plays a crucial role in processing big data

into useful information.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Why is Data Analysis Important?

 Better Customer Targeting.

 You Will Know Your Target Customers Better.

 Reduce Operational Costs.

 Better Problem-Solving Methods.

 You Get More Accurate Data.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Analysis - Process

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Analysis Process.

 Data Requirement Gathering

 Data Collection

 Data Cleaning

 Data Analysis

 Data Interpretation

 Data Visualization

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Data Analysis Process.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Considerations/issues in data analysis

 There are a number of issues that researchers should be

cognizant of with respect to data analysis.

 These include:

 Having the necessary skills to analyze

 Concurrently selecting data collection methods and

appropriate analysis

 Drawing unbiased inference

 Inappropriate subgroup analysis

 Following acceptable norms for disciplines

 Determining statistical significance

 Lack of clearly defined and objective outcome

measurements

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Considerations/issues in data analysis
Contd…

 Providing honest and accurate analysis

 Manner of presenting data

 Environmental/contextual issues

 Data recording method

 Partitioning ‘text’ when analyzing qualitative data

 Training of staff conducting analyses

 Reliability and Validity

 Extent of analysis

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Excel Data Analysis

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Excel Data Analysis

 Microsoft Excel is one of the most popular

applications for data analysis.

 Equipped with built-in pivot tables, they are

without a doubt the most sought-after analytic tool

available.

 It is an all-in-one data management software that

allows you to easily import, explore, clean, analyze,

and visualize your data.

 In this article, we will discuss the various methods

of data analysis in Excel.

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

How to Utilize Data Analysis in Excel

 Charts – Data Visualization

 Conditional Formats – Statistical

 etc…

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

 Refer the PDF document

 (About Excel and Various Data Analysis Operation which

 can perform using Excel)

File Name: A Comprehensive guide to Microsoft Excel for Data Analysis.pdf

Instructor: M V Kamal | Associate Professor | CSE Dept. | MRCET

Understanding Analysis tool pack: ANOVA

Refer: PDF Document and Excel File for Execution of ANOVA

File Name: ANOVA-Document.pdf

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 1

ANOVA? (Analysis of Variance)

How to Install the ANOVA Package in the Excel
Steps:

How to load the Analysis ToolPak add-in (Windows)
1. Go to the File tab on the ribbon and click Options,

2. Click the Add-Ins category on the left. (In Excel 2007, click the Microsoft Office

Button, and then click Excel Options.)

3. From the Manage drop-down list, select Excel Add-ins, then click Go.

4. In the Add-Ins dialog box, tick the Analysis ToolPak check box, then click OK.

About ANOVA-Data Analysis and its Options

Data Analysis window pops up, listing 19 analysis tools which are linked to functions

designed to analyze data using various mathematical formulas.

You may notice that Excel takes slightly longer to open when the add-in is loaded.

This is to be expected, as more resources are being used to run the application.

The tools currently available are:

 Anova (Single-Factor)

 Anova (Two-Factor With Replication)

 Anova (Two-Factor Without Replication)

 Correlation

 Covariance

 Descriptive Statistics

 Exponential Smoothing

 F-Test Two-Sample for Variances

 Fourier Analysis

 Histogram

 Moving Average

 Random Number Generation

 Rank and Percentile

 Regression

 Sampling

 t-Test: Paired Sample for Means

 t-Test: Two-Sample Assuming Equal Variances

 t-Test: Two-Sample Assuming Unequal Variances

 z-Test: Two Sample for Means

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 2

The purpose of each analytical tool is shown below.

Tool Description

Anova (Analysis of
Variance): Single
Factor

This tool determines if there is a relationship between two datasets by
performing a simple analysis of variance.

Anova (Analysis of
Variance): Two Factor
with Replication

This tool determines if there is a relationship between two datasets by
performing an analysis of variance when each data set has more than one
observable data point.

Anova (Analysis of
Variance): Two-Factor
without Replication

This tool determines if there is a relationship between two data sets by
performing an analysis of variance. There is only a single observable data
point for each pair.

Correlation Tells you how strongly two variables are related to each other.

Covariance The Covariance analysis tool calculates the average of the product of
deviations of values from the means of each data set.

Descriptive Statistics Generates a report of univariate statistics for the selected data. Statistics
generated include: Mean, Standard Error, Median, Mode, Standard
Deviation, Sample Variance, Kurtosis, Skewness, Range, Minimum,
Maximum, Sum, Count, Largest, Smallest and Confidence Level.

Exponential
Smoothing

Smooths out irregularities (peaks and valleys) in data, to easily recognize
trends . More recent data is weighted more heavily.

F-Test Two Sample for
Variances

This analysis tool compares the variances between two groups of data.

Fourier Analysis This tool solves problems in linear systems and analyzes periodic data by
using the Fast Fourier Transform (FFT) method to transform data. The
Fourier Analysis tool also supports inverse transformations, where the
inverse of transformed data returns the original data.

Histogram The Histogram analysis tool counts occurrences in each of several data
bins. It calculates individual and cumulative frequencies for a cell range of
data and data bins. The output is a table and column chart by the
frequency of occurrences.

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 3

Tool Description

Moving Average Calculates a moving average to allow you to smooth out a data series that
contains peaks and outliers. Used for forecasting trends in sales, inventory,
call volume, etc.

Random Number
Generation

Creates a number of several types of random numbers including Uniform,
Normal, Bernoulli, Poisson, Patterned and Discrete. More flexible than the
RAND and RANDBETWEEN functions.

Rank and Percentile Creates a table which ranks numbers from highest to lowest and provides
a percentile value of each number relative to the other numbers within the
data set.

Regression Uses the function LINEST to analyze how a single dependent variable is
affected by the values of one or more independent variables. Creates a
table of statistics that result from least-squares regression.

Sampling Samples a population randomly or periodically, as desired.

t-Test: Paired Two
Sample for Means

Paired two-sample student's T-Test. Each Two-Sample t-Test analysis tool
tests for equality of the population means that underlie each sample. The
paired two-sample form of the t-Test is used when there is a natural pairing
of observations in the samples — for example, when a sample group is
tested twice, before and after an experiment. There is no assumption that
the variances of both populations are equal.

T-Test: Two Sample
assuming equal
Variances

This analysis tool performs a two-sample student's t-Test. This t-Test form
is based on the assumption that the two paired data sets came from
distributions with the same variances. It is also known as a “homoscedastic
t-Test”. This t-Test can be used to determine if the two samples are likely
to have come from distributions with equal population means.

T-Test: Two Sample
assuming unequal
Variances

This t-Test form assumes that the two datasets are from distributions
where the variances are unequal. This is called a “heteroscedastic t-Test”.

Z-Test: Two Sample
for Means

The Two Sample for Means analysis tool performs a two sample z-Test for
means with known variances. This analysis tool is used to test the null
hypothesis that there is no difference between two population means
against either one-sided or two-sided alternative hypotheses. If mean
variances are not known, use the Z.TEST function instead.

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 4

What Is ANOVA? (Analysis of Variance)

Buying a new product or testing a new technique but not sure how it stacks up

against the alternatives? It’s an all too familiar situation for most of us. Most options

sound similar to each other, so picking the best out of the lot is a challenge.

Consider a scenario where we have three medical treatments for patients with

similar diseases. Once we have the test results, one approach is to assume that the

treatment which took the least time to cure the patients is the best among them.

What if some of these patients had already been partially cured, or if any other

medication was already working on them?

In order to make a confident and reliable decision, we will need evidence to support

our approach. This is where the concept of ANOVA comes into play.

A common approach to figuring out a reliable treatment method would be to analyze

the days the patients took to be cured. We can use a statistical technique to

compare these three treatment samples and depict how different these samples are

from one another. Such a technique, which compares the samples based on their

means, is called ANOVA.

Analysis of variance (ANOVA) is a statistical technique used to check if the

means of two or more groups are significantly different from each other. ANOVA

checks the impact of one or more factors by comparing the means of different

samples. We can use ANOVA to prove/disprove whether all the medication

treatments were equally effective.

Another measure to compare the samples is called a t-test. When we have only two

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 5

samples, t-test, and ANOVA give the same results. However, using a t-test would not

be reliable in cases with more than 2 samples. If we conduct multiple t-tests for

comparing more than two samples, it will have a compounded effect on the error rate

of the result.

Terminologies Related to ANOVA

Before we start with the ANOVA applications, I would like to introduce some

common terminologies used in the technique.

Grand Mean

Mean is a simple or arithmetic average of a range of values. There are two kinds of

means that we use in ANOVA calculations, which are separate sample

means and the grand mean . The grand mean is the mean of

sample means or the mean of all observations combined, irrespective of the sample.

Hypothesis

Considering our above medication example, we can assume that there are 2

possible cases – either the medication will have an effect on the patients or it won’t.

These statements are called Hypothesis. A hypothesis is an educated guess about

something in the world around us. It should be testable either by experiment or

observation.

Just like any other kind of hypothesis that you might have studied in statistics,

ANOVA also uses a Null hypothesis and an Alternate hypothesis. The Null

hypothesis in ANOVA is valid when all the sample means are equal, or they don’t

have any significant difference. Thus, they can be considered as a part of a larger

set of the population. On the other hand, the alternate hypothesis is valid when at

least one of the sample means is different from the rest of the sample means. In

mathematical form, they can be represented as:

Where belonging to any two sample means out of all the samples

considered for the test. In other words, the null hypothesis states that all the sample

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 6

means are equal or the factor did not have any significant effect on the results.

Whereas, the alternate hypothesis states that at least one of the sample means is

different from another. But we still can’t tell which one specifically. For that, we will

use other methods that we will discuss later in this article.

Between Group Variability

Consider the distributions of the below two samples. As these samples overlap, their

individual means won’t differ by a great margin. Hence the difference between their

individual and grand means won’t be significant enough.

Now consider these two sample distributions. As the samples differ from each other

by a big margin, their individual means would also differ. The difference between the

individual means and grand mean would, therefore, also be significant.

Such variability between the distributions is called Between-group variability. It

refers to variations between the distributions of individual groups (or levels) as the

values within each group differ.

Each sample is examined, and the difference between its mean and grand mean is

calculated to calculate the variability. If the distributions overlap or are close, the

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 7

grand mean will be similar to the individual means, whereas if the distributions are

far apart, the difference between means and grand mean would be large.

We will calculate Between Group Variability just as we calculate the standard

deviation. Given the sample means and Grand mean, we can calculate it as follows:

We also want to weigh each squared deviation by the sample size. In other words, a

deviation is given greater weight if it’s from a larger sample. Hence, we’ll multiply

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 8

each squared deviation by each sample size and add them. This is called the sum-

of-squares for between-group variability

We must do one more thing to derive a good measure of between-group variability.

Again, recall how we calculate the sample standard deviation.

We find the sum of each squared deviation and divide it by the degrees of freedom.

For our between-group variability, we will find each squared deviation, weigh them

by their sample size, sum them up, and divide by the degrees of freedom (), which in

the case of between-group variability is the number of sample means (k) minus 1.

Within Group Variability

Consider the given distributions of three samples. As the spread (variability) of each

sample increases, their distributions overlap, and they become part of a big

population.

Now consider another distribution of the same three samples but with less variability.

Although the means of samples are similar to those in the above image, they seem

to belong to different populations.

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 9

Such variations within a sample are denoted by Within-group variation. It refers to

variations caused by differences within individual groups (or levels), as not all the

values within each group are the same. Each sample is looked at on its own, and

variability between the individual points in the sample is calculated. In other words,

no interactions between samples are considered.

We can measure Within-group variability by looking at how much each value in

each sample differs from its respective sample mean. So first, we’ll take the squared

deviation of each value from its respective sample mean and add them up. This is

the sum of squares for within-group variability.

Like between-group variability, we then divide the sum of squared deviations by

the degrees of freedom to find a less-biased estimator for the average

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 10

squared deviation (essentially, the average-sized square from the figure above).

Again, this quotient is the mean square, but for within-group variability: . This

time, the degrees of freedom is the sum of the sample sizes (N) minus the number of

samples (k). Another way to look at degrees of freedom is that have the total number

of values (N) and subtract 1 for each sample:

F-Statistic (F-test)

The statistic that measures whether the means of different samples are significantly

different is called the F-Ratio. The lower the F-Ratio, the more similar will the sample

means be. In that case, we cannot reject the null hypothesis.

F = Between-group variability / Within-group variability

This above formula is pretty intuitive. The numerator term in the F-statistic

calculation defines the between-group variability. As we read earlier, the sample

means to grow further apart as between-group variability increases. In other words,

the samples are likelier to belong to different populations.

This F-statistic calculated here is compared with the F-critical value for concluding. In

terms of our medication example, if the value of the calculated F-statistic is more

than the F-critical value (for a specific α/significance level), then we reject the null

hypothesis and can say that the treatment had a significant effect.

Unlike the z and t-distributions, the F-distribution has no negative values

because between and within-group variability are always positive due to

squaring each deviation.

About ANOVA By Dr M V Kamal (DSTT – Unit-III_) Page 11

Therefore, there is only one critical region in the right tail (shown as the
blue-shaded region above). If the F-statistic lands in the critical region, we
can conclude that the means are significantly different, and we reject the
null hypothesis. Again, we must find the critical value to determine the cut-
off for the critical region. We’ll use the F-table for this purpose.

We need to look at different F-values for each alpha/significance level
because the F-critical value is a function of two

things: and

Material Source: Analytics Vidya

https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/

Compiled by: Dr M V Kamal

Other Reference Resources:

https://support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-data-analysis-6c67ccf0-

f4a9-487c-8dec-bdb5a2cefab6

Video: https://www.youtube.com/watch?v=ZvfO7-J5u34

http://www.socr.ucla.edu/applets.dir/f_table.html
https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/
https://support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-data-analysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6
https://support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-data-analysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6
https://www.youtube.com/watch?v=ZvfO7-J5u34

UNIT - IV

http://www.allitebooks.org

KNIME Essentials

Perform accurate data analysis using the power
of KNIME

Gábor Bakos

BIRMINGHAM - MUMBAI

http://www.allitebooks.org

KNIME Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-921-1

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

http://www.allitebooks.org

Credits

Author
Gábor Bakos

Reviewers
Thorsten Meinl

Takeshi Nakano

Acquisition Editors
Saleem Ahmed

Edward Gordon

Commissioning Editor
Amit Ghodake

Technical Editors
Iram Malik

Aman Preet Singh

Copy Editors
Gladson Monteiro

Kirti Pai

Mradula Hegde

Sayanee Mukherjee

Project Coordinator
Esha Thakker

Proofreader
Clyde Jenkins

Indexers
Tejal Daruwale

Priya Subramani

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

http://www.allitebooks.org

About the Author

Gábor Bakos is a programmer and a mathematician, having a few years
of experience with KNIME and KNIME node development (HiTS nodes and
RapidMiner integration for KNIME).

In Trinity College, Dublin, the author was helping a research group with his
data analysis skills (also had the opportunity to improve those), and with the
new KNIME node development. When he worked for the evopro Kft. or the
Scriptum Informatika Zrt., he was also working on various data analysis
software products. He currently works for his own company, Mind Eratosthenes
Kft. (www.mind-era.com), where he develops the RapidMiner integration for
KNIME (tech.knime.org/community/rapidminer-integration), among
other things.

The author would like to thank the reviewers and Packt Publishing
for their help in creating this book.

http://www.allitebooks.org

About the Reviewers

Thorsten Meinl is currently a Senior Software Developer at KNIME.com in
Zurich. He holds a PhD in Computer Science from the University of Konstanz.
He has been working on KNIME for over seven years. His main responsibilities
are quality assurance, testing, and the continuous integration infrastructure, as
well as managing the KNIME Community Contributions. Besides this, he is also
interested in parallel computing and cheminformatics.

Takeshi Nakano is a Senior Research Engineer working for Recruit Technologies
Co., Ltd. and leads the Advanced Technology Lab in Japan. He holds a Master's
degree from the Nara Institute of Science and Technology (NAIST) in Computer
Science. He is the lead author of Hadoop Hacks, a book from O'Reilly Japan, and
also the author of Getting Started with Apache Solr, a book from GijutsuHyohron in
Japan. He loves to find inspiration for his hobbies (reading, scuba diving, and others).

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing and Using KNIME	 7

Few words about KNIME	 7
Installing KNIME	 8

Installation using the archive	 8
KNIME for Windows	 8
KNIME for Linux	 9
KNIME for Mac OS X	 9

Troubleshooting	 9
KNIME terminologies	 9

Organizing your work	 10
Nodes	 10

Node lifecycle	 11
Meta nodes	 12
Ports	 12

Data tables	 12
Port view	 14

Flow variables	 14
Node views	 15

HiLite	 15
Eclipse concepts	 16

Preferences	 16
Logging	 16

User interface	 17
Getting started	 17
Setting preferences	 17

KNIME	 17
Other preferences	 18

Installing extensions	 18

http://www.allitebooks.org

Table of Contents

[ii]

Workbench	 19
Workflow handling	 21
Node controls	 22
Meta nodes	 26
Workflow lifecycle	 26
Other views	 27

Summary	 27
Chapter 2: Data Preprocessing	 29

Importing data	 30
Importing data from a database	 30

Starting Java DB	 30
Importing data from tabular files	 32
Importing data from web services	 33

REST services	 34
Importing XML files	 34
Importing models	 34
Other formats	 34
Public data sources	 35

Regular expressions	 35
Basic syntax	 35
Partial versus whole match	 38
Usage from Java	 38
References and tools	 39
Alternative pattern description	 39

Transforming the shape	 39
Filtering rows	 39

Sampling	 40
Appending tables	 41
Less columns	 41

Dimension reduction	 41
More columns	 42
GroupBy	 43
Pivoting and Unpivoting	 44
One2Many and Many2One	 45
Cosmetic transformations	 45

Renames	 45
Changing the column order	 45
Reordering the rows	 46
The row ID	 46

Transpose	 46
Transforming values	 46

Generic transformations	 46
Java snippets	 47

http://www.allitebooks.org

Table of Contents

[iii]

The Math Formula node	 48
Conversion between types	 49

Binning	 50
Normalization	 51

Text normalization	 51
Multiple columns	 53
XML transformation	 54
Time transformation	 54
Smoothing	 55

Data generation	 55
Generating the grid	 56

Constraints	 58
Loops	 60
Workflow customization	 61
Case study – finding min-max in the next n rows	 62
Case study – ranks within groups	 65
Summary	 66

Chapter 3: Data Exploration	 67
Computing statistics	 67
Overview of visualizations	 70
Visual guide for the views	 72
Distance matrix	 79
Using visual properties	 80

Color	 80
Size	 81
Shape	 81

KNIME views	 82
HiLite	 82

Use cases for HiLite	 83
Row IDs	 83
Extreme values	 83

Basic KNIME views	 84
The Box plots	 84
Hierarchical clustering	 85
Histograms	 85
Interactive Table	 86
The Lift chart	 86
Lines	 86
Pie charts	 87
The Scatter plots	 87
Spark Line Appender	 88

http://www.allitebooks.org

Table of Contents

[iv]

Radar Plot Appender	 88
The Scorer views	 88

JFreeChart	 89
The Bar charts	 89
The Bubble chart	 90
Heatmap	 90
The Histogram chart	 90
The Interval chart	 90
The Line chart	 91
The Pie chart	 91
The Scatter plot	 91

Open Street Map	 91
3D Scatterplot	 92
Other visualization nodes	 92

The R plot, Python plot, and Matlab plot	 93
The official R plots	 93
The RapidMiner view	 93
The HiTS visualization	 94

Tips for HiLiting	 95
Using Interactive HiLite Collector	 95
Finding connections	 96

Visualizing models	 96
Further ideas	 99

Summary	 99
Chapter 4: Reporting	 101

Installation of the reporting extensions	 101
Reporting concepts	 102
Importing data	 103

Sending data and images to a report	 103
Importing from other sources	 104
Joining data sets	 105

Preferences	 106
Using the designer	 107

In visible views	 109
Report properties	 110
Report items	 111

Label	 111
Text	 111
Dynamic text	 112
Data	 112
Image	 113
Grid	 113

Table of Contents

[v]

List	 113
Table	 115
Chart	 115
Cross Tab	 117

Quick Tools	 120
Aggregation	 120
Relative time period	 120

Generating reports	 120
Using colors	 121
Using HiLite	 122
Using workflow variables	 122
Suggested readings	 123
Summary	 124

Index	 125

Preface
Dear reader, welcome to an intuitive way of data analysis. Using a visual
programming language based on dataflows, you can create an easy-to-understand
analysis process, while it internally checks signals about some of the common
problems. Obviously, any environment that does not help with proper
documentation would be destined to fail, but KNIME's success is based not just
on its high quality—cross-platform—code, but also on the good description about
what it does and how you can use the building blocks.

This book covers the most common tasks that are required during the data
preparation and visualization phase of data analysis using KNIME. Because of
the size constraints—and to bring the best price/value for those who are already
familiar with or not interested in modeling—we have not covered the modeling
and machine learning algorithms available for KNIME. If you are already familiar
with these algorithms, you will easily get familiar with the options in KNIME, and
these are quite obvious to use, so you lose almost nothing. If you have not found
time yet to get acquainted with these concepts, we encourage you to first learn
for what these procedures are good and when you should use them. There are
some good books, courses, and training available—these are the ideal options for
learning—but the Wikipedia articles can also give you a basic introduction specific
to the algorithm you want to use.

What this book covers
Chapter 1, Installation and Using KNIME, introduces the user interface, the concepts
used in the first three chapters, and how you can install and configure KNIME and
its extensions.

Chapter 2, Data Preprocessing, covers the most common tasks, so that you can analyze
your data, such as loading, transforming, and generating data; it also introduces the
powerful regular expressions and some case studies.

Preface

[2]

Chapter 3, Data Exploration, describes how you can use KNIME to get an overview
about your data, how you can visualize them in different forms, or even create
publication quality figures.

Chapter 4, Reporting, introduces the KNIME reporting extension with the specific
concepts, the user interface, and the basic blocks of reports.

What you need for this book
You only need a KNIME-compatible operating system, which is either a modern
Linux, Mac OS X (10.6 or above), or Windows XP or above. The Java runtime is
bundled with KNIME, and the first chapter describes how you can download and
install KNIME. For this reason, you will need Internet connection too.

Who this book is for
This book is designed to give a good start to the data scientists who are not familiar
with KNIME yet. Others, who are not familiar with programming, but need to load
and transform their data in an intuitive way might also find this book useful.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: " In the first case, you have not much
control about the details, for example, a Pattern object will be created for each call
of the facade methods delegating to the Pattern class "

A block of code is set as follows:

// system imports
// Your custom imports:
import java.util.regex.*;
// system variables
// Your custom variables:
Pattern tuplePattern = Pattern.compile("\\((\\d+),\\s*(\\d+)\\)");
// expression start

Preface

[3]

// Enter your code here:
if (c_edge != null) {
 Matcher m = tuplePattern.matcher(c_edge);
 if (m.matches()) {
 out_edge = m.replaceFirst("($2, $1)");
 } else {
 out_edge = "NA";
 }
} else {
 out_edge = null;
}
// expression end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// system imports
// Your custom imports:
import java.util.regex.*;
// system variables
// Your custom variables:
Pattern tuplePattern = Pattern.compile("\\((\\d+),\\s*(\\d+)\\)");
// expression start
// Enter your code here:
if (c_edge != null) {
 Matcher m = tuplePattern.matcher(c_edge);
 if (m.matches()) {
 out_edge = m.replaceFirst("($2, $1)");
 } else {
 out_edge = "NA";
 }
} else {
 out_edge = null;
}
// expression end

Any command-line input or output is written as follows:

$ tar –xvzf knime_2.8.0.linux.gtk.x86_64.tar.gz –C /path/to/extract

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Eclipse's
main window is the workbench".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic in which you have expertise, and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Installing and Using KNIME
In this chapter, we will go through the installation of KNIME, add some useful
extensions, customize the settings, and find out how to use it for basic tasks.
You will also be familiarized with the terminology of KNIME, so there's no
misunderstanding in the later chapters.

As always, it is a good idea to read the manual of the software you get. You will
find a short introduction on KNIME in the file, quickstart.pdf, present in the
installation folder. The topics we will cover in the chapter are as follows:

•	 Installation of KNIME on different platforms
•	 Terms used in KNIME
•	 Introduction to the KNIME user interface

Few words about KNIME
KNIME is an open source (GNU GPL available at http://www.gnu.org/licenses/
gpl.html) data analytics platform with a large set of building blocks and third-party
tools. You can use it from loading your data to a final report or to predict new values
using a previously found model.

KNIME is available in four flavors: Desktop/Professional, Team Space, Server, and
Cluster Execution. Only the Desktop version is open source; with a Professional
subscription, you will get support for it, and also support the future development of
KNIME. We will cover only the open source version. There is also an SDK version
for free, but it is intended for use by node developers. Most probably, you will not
need it yet.

At the time of writing this book, KNIME Desktop 2.8.0 was the latest version
available; all the information presented in this book is based on that version.

http://www.allitebooks.org

Installing and Using KNIME

[8]

Installing KNIME
KNIME is supported by various operating systems on 32-bit and 64-bit x86
Intel-architecture-based platforms. These operating systems are: Windows
(from XP to Windows 8 at the time of writing this book) and Linux (most
modern Linux operating systems work well with KNIME, Mac OS X (10.6
and above); you can check the list of supported platforms for details at:
http://www.eclipse.org/eclipse/development/readme_eclipse_3.7.1.html.
It also supports Java 7 on Windows and Linux, so extensions requiring Java 7 can
be used too. Unfortunately under Mac OS X, there were some problems with Java
7. So on Mac OS X, the recommended version is Java 6.

There are two ways to install KNIME: an easier way is to unpack the archive you
can download from their site, and a bit more complicated way is to install KNIME
to an existing Eclipse installation as a plugin. Both have use cases, but the general
recommendation is to install it from an archive.

Installation using the archive
We assume you are using the open source version of KNIME, which can be
downloaded from the following address (always download the latest version):

http://www.knime.org/knime-desktop-sdk-download

It is not necessary to subscribe to the newsletters, but if you have not done it yet, it
might be worth doing it. Some of the newsletters also contain tips for KNIME usage.
This is quite infrequent, usually one per month.

The supported operating system versions are 32-bit and 64-bit for Linux and
Windows, and 64-bit for Mac OS X.

KNIME for Windows
KNIME is available in an executable file for Windows (in a 7-zip compressed format).
You can execute it as a regular user (unless your network administrator blacklists
running executable files that are downloaded from the Internet); just double-click on
it and in the window that appears, select the destination folder.

On an older version of Windows (7 and older), there is a limitation to the
path length; it cannot be longer than 260 characters. KNIME and some
extensions can get close to this limit, so it is recommended to install it to a
short path. Installing it to Program Files is not recommended.

Chapter 1

[9]

You do not have to specify the folder name (such as knime), as a folder with the
name knime_KNIME version (in our case knime_2.8.0) will be created at the
destination address, and it will contain the whole installation. You can have multiple
versions installed.

You can start KNIME GUI with the knime.exe executable file from that folder. You
can create a shortcut of it on your desktop using the right-click menu by navigating
to Send to | Desktop (create shortcut). On its first start, KNIME might ask for
permissions to connect to the Internet. This may require administrator rights, but it is
usually a good idea to change the firewall settings to let KNIME through.

KNIME for Linux
This file is just a simple tar.gz archive. You can unzip it using a command similar to
the one shown as follows:

$ tar –xvzf knime_2.8.0.linux.gtk.x86_64.tar.gz –C /path/to/extract

Alternatively, you can use your favorite archive-handling tool to achieve similar
results. The executable you need is named knime. Your window manager's manual
might help you create application launchers for this executable if you prefer to
have one.

KNIME for Mac OS X
You should drag the dmg file to the Applications place, and if you have Java
installed, it should just work. The executable to start is called knime.app from the
command line, knime.app/Contents/MacOS/knime.

Troubleshooting
If you have problems installing KNIME, maybe others also had similar
problems; please check the FAQ page of KNIME at http://tech.knime.org/faq
first. If it does not solve your problem, you should search the forum at
http://tech.knime.org/forum; if even that fails to help, ask the experts there.

KNIME terminologies
It is important to share your thoughts and problems using the same terms.
This makes it easier to reach your goal, and others will appreciate if it is easy to
understand. This section will introduce the main concepts of KNIME.

Installing and Using KNIME

[10]

Organizing your work
In KNIME, you store your files in a workspace. When KNIME starts, you can specify
which workspace you want to use. The workspaces are not just for files; they also
contain settings and logs. It might be a good idea to set up an empty workspace, and
instead of customizing a new one each time, you start a new project; you just copy
(extract) it to the place you want to use, and open it with KNIME (or switch to it).

The workspace can contain workflow groups (sometimes referred to as workflow
set) or workflows. The groups are like folders in a filesystem that can help organize
your workflows. Workflows might be your programs and processes that describe the
steps which should be applied to load, analyze, visualize, or transform the data
you have, something like an execution plan. Workflows contain the executable
parts, which can be edited using the workflow editor, which in turn is similar to a
canvas. Both the groups and the workflows might have metadata associated with
them, such as the creation date, author, or comments (even the workspace can
contain such information).

Workflows might contain nodes, meta nodes, connections, workflow variables (or
just flow variables), workflow credentials, and annotations besides the previously
introduced metadata.

Workflow credentials is the place where you can store your login name and password
for different connections. These are kept safe, but you can access them easily.

It is safe to share a workflow if you use only the workflow credentials
for sensitive information (although the user name will be saved).

Nodes
Each node has a type, which identifies the algorithm associated with the node. You
can think of the type as a template; it specifies how to execute for different inputs
and parameters, and what should be the result. The nodes are similar to functions (or
operators) in programs.

The node types are organized according to the following general types, which
specify the color and the shape of the node for easier understanding of workflows.
The general types are shown in the following image:

Chapter 1

[11]

Example representation of different general types of nodes

The nodes are organized in categories; this way, it is easier to find them.

Each node has a node documentation that describes what can be achieved using that
type of node, possibly use cases or tips. It also contains information about parameters
and possible input ports and output ports. (Sometimes the last two are called inports
and outports, or even in-ports and out-ports.)

Parameters are usually single values (for example, filename, column name, text, number,
date, and so on) associated with an identifier; although, having an array of texts is
also possible. These are the settings that influence the execution of a node. There are
other things that can modify the results, such as workflow variables or any other
state observable from KNIME.

Node lifecycle
Nodes can have any of the following states:

•	 Misconfigured (also called IDLE)
•	 Configured
•	 Queued for execution
•	 Running
•	 Executed

There are possible warnings in most of the states, which might be important; you can
read them by moving the mouse pointer over the triangle sign.

Installing and Using KNIME

[12]

Meta nodes
Meta nodes look like normal nodes at first sight, although they contain other nodes
(or meta nodes) inside them. The associated context of the node might give options
for special execution. Usually they help to keep your workflow organized and less
scary at first sight.

A user-defined meta node

Ports
The ports are where data in some form flows through from one node to another. The
most common port type is the data table. These are represented by white triangles.
The input ports (where data is expected to get into) are on the left-hand side of the
nodes, but the output ports (where the created data comes out) are on the right-hand
side of the nodes. You cannot mix and match the different kinds of ports. It is also
not allowed to connect a node's output to its input or create circles in the graph of
nodes; you have to create a loop if you want to achieve something similar to that.

Currently, all ports in the standard KNIME distribution are presenting
the results only when they are ready; although the infrastructure
already allows other strategies, such as streaming, where you can view
partial results too.

The ports might contain information about the data even if their nodes are not
yet executed.

Data tables
These are the most common form of port types. It is similar to an Excel sheet or a
data table in the database. Sometimes these are named example set or data frame.

Each data table has a name, a structure (or schema, a table specification), and possibly
properties. The structure describes the data present in the table by storing some
properties about the columns. In other contexts, columns may be called attributes,
variables, or features.

Chapter 1

[13]

A column can only contain data of a single type (but the types form a hierarchy
from the top and can be of any type). Each column has a type, a name, and a position
within the table. Besides these, they might also contain further information, for
example, statistics about the contained values or color/shape information for visual
representation. There is always something in the data tables that looks like a column,
even if it is not really a column. This is where the identifiers for the rows are held,
that is, the row keys.

There can be multiple rows in the table, just like in most of the other data handling
software (similar to observations or records). The row keys are unique (textual)
identifiers within the table. They have multiple roles besides that; for example,
usually row keys are the labels when showing the data, so always try to find
user-friendly identifiers for the rows.

At the intersection of rows and columns are the (data) cells, similar to the data
found in Excel sheets or in database tables (whereas in other contexts, it might
refer to the data similar to values or fields). There is a special cell that represents
the missing values.

The missing value is usually represented as a question mark (?).

If you have to represent more information about the missing data,
you should consider adding a new column for each column, where
this requirement is present, and add that information; however, in
the original column, you just declare it as missing.

There are multiple cell types in KNIME, and the following table contains the most
important ones:

Cell type Symbol Remarks
Int cell I This represents integral numbers in the range from -231 to

231-1 (approximately 2E9).
Long cell L This represents larger integral numbers, and their range is

from -263 to 263-1 (approximately 9E18).
Double cell D This represents real numbers with double (64 bit) floating

point precision.
String cell S This represents unstructured textual information.

Installing and Using KNIME

[14]

Cell type Symbol Remarks
Date and
time cell

 calendar &
clock

With these cells, you can store either date or time.

Boolean cell B This represents logical values from the Boolean algebra
(true or false); note that you cannot exclude the missing
value.

Xml cell XML This cell is ideal for structured data.
Set cell {…} This cell can contain multiple cells (so a collection cell

type) of the same type (no duplication or order of values
are preserved).

List cell {…} This is also a collection cell type, but this keeps the order
and does not filter out the duplicates.

Unknown
type cell

? When you have different type of cells in a column (or in a
collection cell), this is the generic cell type used.

There are other cell types, for example, the ones for chemical data structures (SMILES,
CDK, and so on), for images (SVG cell, PNG cell, and so on), or for documents. This is
extensible, so the other extension can define custom data cell types.

Note that any data cell type can contain the missing value.

Port view
The port view allows you to get information about the content of the port. Complete
content is available only after the node is executed, but usually some information
is available even before that. This is very handy when you are constructing the
workflow. You can check the structure of the data even if you will usually use node
view in the later stages of data exploration during workflow construction.

Flow variables
Workflows can contain flow variables, which can act as a loop counter, a column
name, or even an expression for a node parameter. These are not constants, but you
can introduce them to the workspace level as well.

Chapter 1

[15]

This is a powerful feature; once you master it, you can create workflows you thought
were impossible to create using KNIME. A typical use case for them is to assign
roles to different columns (by assigning the column names to the role name as a flow
variable) and use this information for node configurations. If your workflow has
some important parameters that should be adjusted or set before each execution (for
example a file name), this is an ideal option to provide these to the user; use the flow
variables instead of a preset value that is hard to find. As the automatic generation of
figures gets more support, the flow variables will find use there too.

Iterating a range of values or files in a folder should also be done using flow variables.

Node views
Nodes can also have node views associated with them. These help to visualize your
data or a model, show the node's internal state, or select a subset of the data using
the HiLite feature. An important feature exists that a node's views can be opened
multiple times. This allows us to compare different options of visualization without
taking screenshots or having to remember what was it like, and how you reached
that state. You can export these views to image files.

HiLite
The HiLite feature of KNIME is quite unique. Its purpose is to help identify a group
of data that is important or interesting for some reason. This is related to the node
views, as this selection is only visible in nodes with node views (for example, it is
not available in port views). Support for data high lighting is optional, because not all
views support this feature.

The HiLite selection data is based on row keys, and this information can be lost
when the row keys change. For this reason, some of the nonview nodes also have
an option to keep this information propagated to the adjacent nodes. On the other
hand, when the row keys remain the same, the marks in different views point to
the same data rows.

It is very important that the HiLite selection is only visible in a well-connected
subgraph of workflow. It can also be available for non-executed nodes (for example,
the HiLite Collector node).

The HiLite information is not saved in the workflow, so you should
use the HiLite filter node once you are satisfied with your selection to
save that state, and you can reset that HiLite later.

Installing and Using KNIME

[16]

Eclipse concepts
Because KNIME is based on the Eclipse platform (http://eclipse.org), it
inherits some of its features too. One of them is the workspace model with projects
(workflows in case of KNIME), and another important one is modularity. You can
extend KNIME's functionality using plugins and features; sometimes these are
named KNIME extensions. The extensions are distributed through update sites,
which allow you to install updates or install new software from a local folder,
a zip file, or an Internet location.

The help system, the update mechanism (with proxy settings), or the file search
feature are also provided by Eclipse. Eclipse's main window is the workbench.
The most typical features are the perspectives and the views. Perspectives are
about how the parts of the UI are arranged, while these independently configurable
parts are the views. These views have nothing to do with node views or port views.
The Eclipse/KNIME views can be detached, closed, moved around, minimized, or
maximized within the window. Usually each view can have at most one instance
visible (the Console view is an exception). KNIME does not support alternative
perspectives (arrangements of views), so it is not important for you; however, you
can still reset it to its original state.

It might be important to know that Eclipse keeps the contents of files and folders in a
special form. If you generate files, you should refresh the content to load it from the
filesystem. You can do this from the context menu, but it can also be automated if
you prefer that option.

Preferences
The preferences are associated with the workspace you use. This is where most of
the Eclipse and KNIME settings are to be specified. The node parameters are stored
in the workflows (which are also within the workspace), and these parameters are
not considered to be preferences.

Logging
KNIME has something to tell you about almost every action. Usually, you do not
care to read these logs, you do not need to do so. For this reason, KNIME dispatches
these messages using different channels. There is a file in the workplace that collects
all the messages by default with considerable details. There is even a KNIME/Eclipse
view named Console, which contains only the most important details initially.

Chapter 1

[17]

User interface
So far, you got familiar with the concepts of KNIME and also installed it. Let's run it!

Getting started
When you start the program, the first dialog asks for the location of the workspace
you want to use. If the location does not exist, it will be created.

After this, a splash screen will inform you about the progress of the start, and bring
you to the welcome screen.

In the background, your firewall might notify you that this program wants to
connect to other computers. This is normal; it loads tips from the Internet and tests
whether other services (for example, the public repository of KNIME workflows) are
available or not. You can allow this if you have permission to do so, but unless you
want to connect to other servers, you do not have to give that permission.

The welcome screen shows two main options: one for initializing the workbench for
first use, and the other is to install new extensions.

Before we select either of them, we will introduce the most important preferences,
because configuring before the first use is always useful.

Setting preferences
Navigate to the Preferences... menu item under File | Preferences... to gain access to
the preferences dialog. In the General section, you will see an option to enable Show
heap status. It is useful, because it can help you optimize the memory settings for
KNIME. I suggest you to turn it on. It will be visible in the lower-right corner of the
status bar.

KNIME
You can set some KNIME-related options in the preferences of the KNIME category.

The KNIME GUI subcategory contains confirmation, Console logging, workflow
editor grid options, and some text-related options.

If you want to connect to databases, you should find a driver for your database,
and register it by navigating to KNIME | Database Driver. There, you can add
the archive file, and later, you will be able to use them in database connections.

http://www.allitebooks.org

Installing and Using KNIME

[18]

Database drivers
You can find JDBC database drivers on your database
provider's homepage, but you can also try the JDBC
database: http://www.databasedrivers.com/jdbc/

With Preferred Renderers you can set the default renderers for the columns.
This options is especially useful if you are working with chemical structures.

The main KNIME preference page contains the file logging detail settings,
the parallelism option, and the path to the temporary files.

Other preferences
To set up the proxy, you should navigate to General | Network Connections.

In the General | Keys page, you can redefine the key bindings for KNIME
commands. So, you can use the shortcuts with which you are familiar or
comfortable on your keyboard.

General | Web Browser and the Help pages are especially useful when you have
problems displaying help, or you want to browse local help in your browser.

You can also set some update sites by navigating to Install/Update | Available
Software Sites, but usually that is also done by navigating to Help | Install
New Software....

You can uninstall extensions by navigating to Help | About KNIME behind
the Installation Details button's dialog. The Installed Software tab contains
the extensions; you can uninstall them with a button.

Installing extensions
For installing extensions you need some update sites. You already have the default
KNIME options, which contain some useful extensions. There are community nodes
that also add helpful functionality to KNIME. The stable update site is http://tech.
knime.org/update/community-contributions/2.8, while nightly builds are
available at http://tech.knime.org/update/community-contributions/nightly.

To add update sites, navigate to Help | Install New Software.... Once you have
selected an update site, it will download its summary so you can select which
extensions (features) you want to install. These features have short descriptions, so
you can have an idea what functionality it will offer after installation. Once you have
selected what you want to install from the update site, you should click Next.

Chapter 1

[19]

The wizard's next page gives some details and summaries about the selected features.

On the next page, you can check the licenses and accept them if you are OK with them.
After clicking Finish, the installation starts. During the installation, you might be
asked to check whether you really want to install extensions with unsigned content,
or you want to accept a signing key. Once it is ready, you will be asked to restart your
workbench. After restarting it, you can use the features that were installed; however,
sometimes there are some preferences to be set before using them.

Workbench
So far, we have set up the work environment and installed some extensions.
Now let's select the large button named Open KNIME Workbench.

The initial workbench

Installing and Using KNIME

[20]

The menu bar is similar to any other menu bar, just like the toolbars and the status
bar. We will cover the menu bar and the toolbar in detail.

The KNIME Explorer view can be used to handle your workflows, workflow groups,
or connect to KNIME servers. The Favorite Nodes view contains the favorite, last
used, and most used nodes as a shortcut. You can specify the maximum number of
items that should be there.

You should play with the view controls a bit more and get
familiar with their usage.

Node Repository is one of the most important views. It contains nodes organized in
categories. The search box is really helpful when it comes to the workflow design,
and if you remember a part of the name but not its category. You will use this feature
quite often.

The Outline view gives an overview on what is in the current editor window; it can
also help navigating if the window is too large.

It is considered bad practice to have a single, huge workflow for
your task. Using meta nodes, you can have more compact parts
in every level.

The Console view contains messages—initially only the important ones.

The Node Description tab provides you with help information for the selected node.
Information on how you should use it, what are the parameters, what should be its
input, what is its output, and what kind of views are available are answered in that
tab. When you select a category in the Node Repository view, the contents of the
category will be displayed.

And finally, the central area of the window is for the workflow editor. A workflow
named KNIME_project was created. Now, you can start working on it. Try adding
the File Reader node from the IO | Read category in Node Repository. Drag it from
the repository to the workflow or just double-click it in the repository, move it around,
add another, delete it using the context menu, and that would be a good start.

The Undo (Ctrl + Z) and Redo (Ctrl + Y) commands from the Edit or the context
menu (or from the toolbar: curved left and right arrows) can help you go back to
the previous editing state.

Chapter 1

[21]

Workflow handling
To create a workflow group, open the context menu of the LOCAL (Local Workspace)
item in the KNIME Explorer view and select New Workflow Group... from the
menu. Specify the name of the workflow group and where it should be created (once
you have more groups, you can create groups inside those too). Creating a workflow
can also be done using the New Workflow... command. These commands are also
available from the File | New... (Ctrl + N) dialog.

The key bindings are not always easy to remember because there are
many of them; for more information and help about them, navigate to
the Help | Key Assist... menu item or use Ctrl + Shift + L.

To load a workflow, first you have to make it available locally. There are many
options to do that. You can import it to the workspace using the File | Import
KNIME workflow... dialog (also available from the context menu).

There is a file named ExampleFlow.zip in the installation folder;
you can use that.

The Example Flow workflow loads the iris dataset (do not reset that
node), colors the rows according to their class label, and visualizes the
data in three different ways.

Another option is to download a workflow from the KNIME Server. Fortunately,
the public KNIME Server is available for guests too. First you have to log in using
the context menu. Select the only available option, Login. Once the catalog has been
loaded, you can browse it similar to what you can do with the local workspace. But
you cannot open the workflow from there. You have to select the one you want to
import and copy it (in the context menu, use Copy or press Ctrl + C). Once you have
the right place in the local workspace, insert the workflow (in the context menu use
Paste, or press Ctrl + V).

The metadata information can be handy if you want to know when it was created,
who the author is, or what did someone comment. The comment information is
especially handy if you want to choose the workflow you want to download. To
get (or set for local workflows) this information, the context menu's Show Meta
Information (or Edit Meta Information...) command should be used.

Installing and Using KNIME

[22]

Describe your dependencies
If you mention the prerequisites to your workflow, it will help the
next user (who may be the future you) to set up things properly.

In loaded workflows, sometimes there are yellow notes about the structure of the
workflow to grab your attention for customization options, and others. You can
create your own notes from the context menu of the workflow editor using the New
Workflow Annotation menu item. You can close the workflow by closing its editor.

The context menu gives options to Rename... (F2) (only available for closed
workflows), Delete... (Delete), Copy (Ctrl + C), Paste (Ctrl + V), or Cut (Ctrl + X)—or
just move using dragging—workflows or workflow groups.

The quickstart.pdf file describes how you can export workflows to share
them with other users. The web guide for this is available at:
http://tech.knime.org/workbench#export

Node controls
Once you have nodes in the editor, you want to configure it. To do that, you
should double-click it, select it from the context menu or the Node menu using
the Configure... command, or use the toolbar's checklist icon (also accessible by
pressing F6). This opens a configuration dialog (Line Reader node), as shown in
the following screenshot:

Example configuration dialog

Chapter 1

[23]

This way you can set the parameters of the node. There can be various controls,
usually with helpful tooltips; you can open them in a side window, and add the node
description too. You might wonder what should that v=? button do. It opens up the
variable settings. For example, you can use the filename in subsequent nodes as a
flow variable, or substitute it with a flow variable, if that is what you need.

The configurations are organized in tabs. The last two tabs are present in all the
configuration dialogs. The Flow Variables tab allows you to assign flow variables to
the parameters as values, as shown in the following screenshot:

The Flow Variables tab

The Memory Policy tab is seldom needed; you can specify how the data should
be handled within KNIME during execution of the node, as shown in the
following screenshot:

The Memory Policy tab

Installing and Using KNIME

[24]

It really helps to identify the nodes or their purpose if you give them meaningful
names. To change the name, click on a previously selected node or press F2. If
you want more detailed information, you might consider adding a workflow
annotation around it. Alternatively, you might want to add a node description to it
by navigating to the context menu item Edit Node Description..., or the Node menu
Edit Node Name and Description... (Alt + F2), or by clicking the toolbar's yellow
speech balloon. This information will be the tooltip of the node.

If you find the names distracting or if they are the default name, you can hide or
enable them by navigating to Node | Hide Node Names, by pressing Ctrl + Alt + Q
or the stroked through text on the toolbar.

The way from not configured to configured, and then the executing and executed states.

We want to execute the node to get the results. To achieve this, select the context
menu or the Node menu, and select Execute (F7). On the toolbar, this is the play
button (a white triangle on green circle). You can also schedule execution to show
the first view after that (Shift + F10). You can change your mind and try to stop
the execution before it is finished. For this purpose, navigate to Node | Cancel
Execution (F9) of the selected nodes, or navigate to Node | Cancel All Execution
(Shift + F9).

There might be warnings or errors even after the execution; you will be notified
about those.

If the execution finishes successfully, you can check the ports by selecting one of
them from the context menu; alternatively, if you want to check the first output port,
navigate to Node | Open First Out-Port View (Shift + F6, a magnifier over a table on
the toolbar). Checking views is a good idea too (it can be selected from the context
menu or via Node | Open First View, F10, a magnifier on the toolbar). The node
views also have some common parts: the File and the HiLite menus.

Chapter 1

[25]

If you make changes to the configuration, your node will be reset to the configured
state; it can also be achieved using Node or the context menu's Reset (F8) command (or
the toolbar's x-table button). The reset will not delete the previously set parameters.

To connect a node's output port to another node's input port, just drag the output
port to the input port; when the mouse button is released they will be connected
(assuming the ports are compatible and would not create cycle in the graph of
nodes). From one output port, you can connect to as many input nodes as you want
(to same nodes too), but the input ports can only handle one port at the most.

There are arrangement commands available on the toolbar (horizontal, vertical,
and auto layout), and you can also configure the node snapping grid properties by
navigating to Node | Grid Settings... (Ctrl + Alt + Shift + X) from the toolbar—a grid.

HiLite
As we mentioned previously, HiLite is a view-related feature of KNIME, which
allows selecting certain set of rows and making it visible across different rows. The
Example Flow is a good start to get familiar with this concept and see it in action. As
you can see, there are four visual type nodes available, the Color Manager, Scatter
Plot, Parallel Coordinates, and Interactive table. Please open a view for the last
three nodes, and also execute them in the same order.

The interactive table node shows data with different colors for different flowers.
Select the first Iris-versicolor row, 51. Now from the HiLite menu, select HiLite
selected (also available from the context menu in this view). As you can see, a point
and a path has already been highlighted on the other two views—those representing
the row 51. If you try, you can highlight another row from the Interactive table view;
you can select some dots from the scatter plot or paths from the parallel coordinates.
Highlighting them can be done similar to what you did in the first view. You also
have the option to selectively unhighlight (UnHiLite Selected) or unhighlight all
(Clear HiLite). You can also hide or keep only the highlighted rows (in the view,
the port content will not be changed) using the HiLite | Filter menu items.

To store the HiLite information, you should add HiLite Filter (for example, add it to
the Color Manager node), execute them, and save the workflow. With the Interactive
HiLite Collector node, you can add custom information to the currently highlighted
rows, so that later you can identify multiple subsets (if you check the New Column
box before clicking on Apply). Do not forget to execute the node, and later save the
workflow once you are satisfied with your selection.

Installing and Using KNIME

[26]

Variable flows
When you bring your mouse cursor to the left and upper-right corner of the nodes
(a bit outside of it), you will get a different tooltip—Variable Inport and Variable
Outport (Variables Connection) respectively. Something useful is hidden there.
Select a node, and from the context menu, select Show Flow Variable Ports. This
way two circles will appear filled with the color red. You can connect them to the
other node's input/output flow ports. These connections are red. This way you can
make sure the proper set of variables will be available at the right time (circular
dependencies are not allowed this way). The loops also use the workflow variables,
and there are multiple nodes to create these or change them. You seldom need these
connections as flow variables are propagated through normal connections.

You can also specify workflow variables from the context menu of the workflow
(Workflow Variables...), or by using the QuickForm nodes.

Meta nodes
We mentioned that the meta nodes are useful for encapsulating the parts of the
workflow and to hide the distracting details. The quickstart.pdf file gives a nice
introduction to meta nodes; you can find the content on the web too at the link
http://tech.knime.org/metanodes.

An unmentioned option to create new meta nodes is by selecting a closed subset
of non-executed nodes or meta nodes and invoking the Collapse into Meta Node
action from the context menu. The opposite process (bringing the contents of the
meta node to the current level) is also possible with the Expand Meta Node context
menu item.

Opening a meta node is possible by double-clicking on it or selecting the Open Meta
Node context menu item. Both ways, another workflow editor tab will appear, where
you can continue the workflow design.

Workflow lifecycle
Once you have a workflow, you might want to save the changes you made and the
computed data and models. That is really easy; navigate to File | Save (Ctrl + S) or
use the toolbar's disc icon.

You cannot save workflows with executing nodes, so you have to
save them before or later, else you have to stop the execution.

Chapter 1

[27]

Sometimes you want to execute the whole workflow. To do that, you can use the
toolbar's Execute all executable nodes button (a fast forward icon with a green circle
background, Shift + F8) or the Node | Execute All menu item.

Batch processing
To process workflows from the command line (or from other program),
the KNIME FAQ gives a good description at the following link:
http://tech.knime.org/faq#q12

If there are multiple entry points to your workflow, it can be boring to reset all
those nodes one by one, but the Reset command from the context menu of KNIME
Explorer will reset all the nodes in the selected workflow.

Other views
The Server Workflow Projects view shows only the workflows (and groups)
available on servers, but the Workflow Projects view shows only the local ones. If
you do not need server workflows, this might be a better choice than the KNIME
Explorer view, as this is more compact.

KNIME Node Monitor (View | Other... | KNIME Views) view gives you
information about the selected item's state and other parameters. I think you will find
this useful, especially if you explore the dropdown menu from the white triangle:

KNIME Node Monitor's possible contents

Summary
In this chapter, we have installed KNIME, set it up for its first usage, configured it,
and installed a few extensions. We also went through the most important concepts
you will use. We started using the workflow editor and executed our first workflow.
Now it is time for you to check some of the example workflows from the KNIME
public server and try to execute and modify them.

http://www.allitebooks.org

Data Preprocessing
Data preprocessing usually takes a lot of time to set up, because you have to take
care of lot of different formats or sources. In this chapter, we will introduce the
basic options to not only read and generate data but also to reshape them. Changing
values is also a common task, and we will cover that too.

It is a good practice to keep checking certain constraints especially if you have
volatile input sources. This is also important in KNIME. Finally, we will go through
an example of workflow from import to preprocessing. In this chapter, we will cover
the following topics:

•	 Data import
°° From database
°° From files
°° From web services

•	 Regular expressions
•	 Transforming tables
•	 Transforming values
•	 Generating data
•	 Constraints
•	 Case studies

Data Preprocessing

[30]

Importing data
Your data can be from multiple sources, such as databases, Internet/intranet, or files.
This section will give a short introduction to the various options.

Importing data from a database
In this section, we will use the Java DB (http://www.oracle.com/technetwork/
java/javadb/index.html) to create a local database because it is supported by
Oracle, bundled with JDKs, cross-platform, and easy to set up. The database we use
is described on eclipse's BIRT Sample Database page (http://www.eclipse.org/
birt/phoenix/db/#schema).

Starting Java DB
Once you have Java DB installed (unzipped the binary distribution from Derby
(http://db.apache.org/derby/derby_downloads.html) or located your JDK),
you should also download the BirtSample.jar file from this book's website
(originally from http://mirror-fpt-telecom.fpt.net/eclipse/birt/
update-site/3.7-interim/plugins/org.eclipse.birt.report.data.oda.
sampledb_3.7.2.v20120213.jar.pack.gz). Unzip the content to the database
server's install folder.

You should start a terminal from the database server's home folder, using the
following command:

bin/startNetworkServer

You can stop it with the bin/stopNetworkServer command.

Locate the database server's lib/derbyclient.jar file. You should install this
driver as described in the previous chapter (File | Preferences | KNIME |
Database Driver).

You can import the DatabaseConnection.zip file, downloaded from this book's
website, as a KNIME workflow. This time, we were not using workflow credentials
as it would always be asked for on load, and it might be hard to remember the
ClassicModels password.

Chapter 2

[31]

The previous screenshot reads different tables and filter some of the results. The Java
Edit Variable node provides the JDBC connection string as a flow variable.

There is a workflow variable named database location (default value: BirtSample),
in case you want to specify an absolute path to the database you want to use. The
Java Edit Variable node appends this path to the default local database connection,
so you can use the Derby JDBC connection variable in the subsequent nodes. You
should start with executing this node to configure the other nodes.

The Database Connector node can connect to the database and give a stub for further
processing (you can inspect it using the port viewer, though, once you execute).

Data Preprocessing

[32]

The Database Query can be used to express complex conditions in the table. Please
be careful. You should name the #table#, like we did in the following query:

SELECT * FROM #table# customerTable where customernumber < 300 or
customernumber is null

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

If you have simpler (single column) conditions, you can also use the Database
Row Filter node. Removal of a few columns (projection) can be performed with the
Database Column Filter node.

If you want to process or visualize the data in KNIME, you have to convert the
database connection port type to regular data tables using the Database Connection
Reader node. If you do not need post-processing of the database tables, you can
simply specify the connection and the query with the Database Reader node.

An interesting option to read data is by using the Database Looping node. It can
read the values from one of the input table's columns and select only the values that
match a subset of the column for one of the database columns' values.

Exercise
Check what happens if you uncheck the Aggregate by row option or
increase the No of Values per Query parameter.

You also have the option to modify the database, such as deleting rows, updating
certain rows, creating tables, and appending records. For details, check the Database
Delete, Database Update, and Database Writer nodes. While replacing/creating a
table for an existing database, the connection can be performed using the Database
Connection Writer node.

Importing data from tabular files
This time, for example, we will load a simple comma-separated file. For this purpose,
you can use the File Reader node and the following link:

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
data

Chapter 2

[33]

KNIME will automatically set the parameters, although you have to specify the
column names (the http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.names file gives a description of the dataset).

In the configuration dialog, you can refine the columns in the preview area by
clicking on its header.

Naturally, you can open the local files too, if you specify the URL using the
Browse... button.

If you have the data in the Excel format, you might need the KNIME XLS Support
extension from the standard KNIME update site. This way, you will be able to read
(with the XLS Reader node) and also write the xls files (with the XLS Writer node).

The extension can also read the xlsx files, but cannot write them.

Just like the File Reader node, XLS Reader can load the files from the Internet too.
(If you have the data in the ods format, you have to convert/export it to either the
xls(x) or the csv file to be able to load from KNIME.)

The CSV Reader node is less important if you prefer to use the KNIME Desktop
product; however, with the batch mode, you might find this node useful (less
options for configuration, but it can provide the file name as a flow variable).

Try dragging a file which can be imported on the editor area.

Attribute-Relation File Format (ARFF) is also tabular (http://weka.wikispaces.
com/ARFF). You can read them with the ARFF Reader node. Exporting to ARFF can
be done with ARFF Writer.

Importing data from web services
For Web Services Description Language (WSDL) web services, you can use the
KNIME Webservice Client standard extension. It provides the Generic Webservice
Client node.

Data Preprocessing

[34]

This node gives many advanced features to access WSDL services,
but you should test it to see whether or not it is compatible with your
service interface before implementing a new one. It is based on Apache
CXF (http://cxf.apache.org/), so any limitation of that project is a
limitation of this node too.

Unfortunately, not much WSDL web services are available for free without
registration, but you can try it out at http://www.webservicex.com/
globalweather.asmx?wsdl. Naturally, if you are registered for another service, or
you have an own in the intranet, you can give it a try.

REST services
Nowadays, the REST (Representational State Transfer) services has gathered
momentum, so it is always nice if you can use it too. In this regard, I would
recommend the next section where we introduce the XML Reader node. You can
use the KREST (http://tech.knime.org/book/krest-rest-nodes-for-knime)
nodes to handle the JSON or XML REST queries.

Importing XML files
You need the KNIME XML-Processing extension from the standard KNIME update
site. The XML Reader node can parse either local or external files, which you can
further analyze or transform.

Importing models
Once you have a model, you might want to save it (Model Writer or PMML Writer)
to use it later in other workflows. In those workflows, you can use the Model Reader
or PMML Reader nodes to bring these models to the new workflow.

Other formats
Some extensions also provide reader nodes to certain data types. The standard
KNIME update site contains multiple chemical extensions supporting different
formats of chemical compounds.

The KNIME Labs Update Site extensions support text processing, graphs, and
logfile analyzing, and they contain readers for these tasks.

Chapter 2

[35]

Public data sources
Most probably you are already familiar with the available data sources for your area
of research/work, although a short list of generic data collections might interest you
in order to improve the results of your data analysis.

Here are some of them:

•	 Open data (http://en.wikipedia.org/wiki/Open_data) members, such
as DATA.GOV (http://www.data.gov/) and European Union Open Data
Portal (http://open-data.europa.eu/)

•	 Freebase (http://www.freebase.com/)
•	 WIKIDATA (http://www.wikidata.org/wiki/Wikidata:Main_Page)
•	 DBpedia (http://dbpedia.org/)
•	 YAGO2 (http://www.mpi-inf.mpg.de/yago-naga/yago/)
•	 Windows Azure Marketplace (http://datamarket.azure.com/)

This was just a short list; you can find many more of these, and the list of data
sources for specific areas would be even longer.

Regular expressions
Regular expressions are excellent for simpler parsing tasks, replaces, or splits. We
will give a short introduction on them and show some examples. These will allow
you to get better idea. At the end of this section, we will suggest further reading.

Basic syntax
Usually, when you write a text as a pattern, this means that the text will be matched;
for example, apple or pear will match the highlighted parts from the following
sentence: "Apple stores do not sell apple or pear."

These are case sensitive by default, so if the pattern were to be simply apple, this
will not match the first word of the sentence or the company name.

There are special characters that need to be escaped when you want to match them:
., [,], (,), {, }, -, ^, $, \ (Well, some of these only in certain positions). To escape
them, you should prefix them with \, which will result in the following patterns: \.,
\[, \], \(, \), \{, \}, \-, \^, \$, \\.

Data Preprocessing

[36]

When you do not want an exact match of characters, you can use the [characters]
brackets around the possible options, such as [abc], which will match either a, b,
or c but not bc (not a single character) or d (not among the options). You can specify
the range of characters using the character within brackets, such as [a-z], which will
match any lower case English alphabet characters. You can have multiple ranges and
values within brackets, such as [a-zA-Z,], which will match either a lowercase or an
uppercase character or a comma (equivalent to [[a-z][A-Z][,]] but not to [a-z]
[A-Z][,] because the latter would match three characters, not one).

To negate a certain character class, you can use the ^ character within brackets; for
example, the [^0-9] pattern will match a single character except the digits (or the
line separators).

It might be tedious and error prone to specify always certain groups of characters,
so there are special sets/classes predefined. Here is a non-exhaustive list of the most
important ones:

•	 \d: It identifies the decimal digits ([0-9])
•	 \s: It identifies the whitespace characters
•	 \n: It identifies a new line character (by default, only single lines are handled

so new lines cannot be matched in that mode, but you can specify a multiline
match too)

•	 \w: It identifies the English alphabet (identifier) characters and decimal digits
([a-zA-Z_0-9])

You can also use the groups within brackets to complement them; for example,
[^\d\s] (a character that is neither a whitespace nor a digit).

These can be used when you know in advance how long you want to match the
parts; although, usually this is not the case. You can specify a range for the number
of times you want to match certain patterns using the {n,m} syntax, where n and m
are nonnegative numbers; for example, [ab]{1,3} will match the following: a, aa,
aaa, and bab but not baba or the empty string.

When you do not specify m in the previously mentioned syntax, it will be (right)
unbounded the number of times it can appear. When you omit the comma sign too,
the preceding pattern has to appear exactly n times to get a match.

There are shorter versions for {0,1} - ?, {0,} - *, {1,} - +.

Chapter 2

[37]

When there is no suffix for these numeric or symbolic quantifiers, you are using the
greedy match; if you append ?, it implies the reluctant; while if you append a + sign,
it will be possessive. Here are some examples: [ab]+b, [ab]+?b, and [ab]++b. The
details are important, and can be shown by example. We will highlight the matches for
certain patterns and texts (we will separate the matches with | if there are multiple):

Text\
pattern

[ab]+b [ab]+?b [ab]++b [ab]+? [ab]++

abababbb abababbb ab|ab|ab|bb abababbb a|b|a|b|a|b|b|b abababbb

ababa ababa ab|aba ababa a|b|a|b|a ababa

abb abb abb abb a|b|b abb

The last column is a whole text match for each example, also the first column's first
and third patterns, but all other examples are just partial (or no) matches.

You might want to create more complex conditions, but you need grouping of
certain patterns for them. There are capturing groups and non-capturing groups.
The capturing groups can be referred to with their number (there is always an
implicit capturing group for each match and the whole match; that is, the 0 group),
but the non-capturing groups are not available for further reference or processing,
although they can be very useful when you want to separate unwanted parts. The
syntax for capturing groups is (subpattern) and for non-capturing groups is
(?:subpattern).

When you want to refer back to previous groups, you should use the \n notation,
where n is the index of the previous group (in the pattern, the start of the nth starting
group parentheses).

There is also an option to create named groups using the (?<name>subpattern)
syntax. (This feature is available since Java 7, so it will not work on Mac OS X until
you can use KNIME with Java 7 or a later version.) Referring to named patterns can
be done with the \k<name> syntax.

With these groups, you can express not just more kinds of quantification, but also
alternatives using the | (or) construct, for example (ab)?((?:[cd]+)|(?:xzy)),
which means that there is optionally a group of ab characters followed by some
sequence of c or d characters or the text xzy. The following will match: abxzy,
abdcdccd, xzy, c, and cd, but xzyc or cxzy will not.

Positionally, you do not have many options; you can specify whether the match
should start at the beginning of the line (^), or it should match till the end of the line
($), or you do not care (no sign).

http://www.allitebooks.org

Data Preprocessing

[38]

The lookahead and lookbehind options can be handy in certain situations too, but
we will not cover them at this time.

Beware. For certain patterns, the matching might take exponentially
long; see http://en.wikipedia.org/wiki/ReDoS for examples.
This might warn you to do not accept arbitrary regular expressions as
a user input in your workflows.

Partial versus whole match
The pattern can be matched by two ways. You can test whether the whole text
matches the pattern or just tries to find the matching parts within the text (probably
multiple times). Usually, the partial match is used, but the whole match also has
some use cases; for example, when you want to be sure that no remaining parts are
present in the input.

Usage from Java
If you want to use regular expressions from Java, you have basically two options:

•	 Use java.lang.String methods
•	 Use java.util.regex.Pattern and related classes

In the first case, you have not much control about the details; for example, a Pattern
object will be created for each call of the facade methods delegating to the Pattern
class (methods such as split, matches, or replaceAll, replaceFirst). The usage
of Pattern and Matcher allows you to write efficient (using Pattern#compile)
and complex conditions and transformations. However, in both cases, you have to
be careful, because the escaping rules of Java and the syntax of regular expressions
do not make them an easy match. When you use \ in a regular expression within a
string, you have to double them within the quotes, so you should write \\d instead
of \d and \\\\ instead of \\ to match a single \.

Automate the escaping
The QuickREx tool (see References, tools) can do the escaping. You create
the pattern, test it, navigate to File | New... | Untitled Text File, and
select the Copy RE to Java action from the menu or the QuickREx
toolbar. (Now you can copy the pattern to the clipboard and insert
them anywhere you want and close the text editor.)

Chapter 2

[39]

On the Pattern object, you can call the matcher method with the text as an
argument and get a Matcher object. On the Matcher object, you can invoke either
the find (for partial matches) or the matches (for whole matches) methods. As we
described previously, you might have different results.

References and tools
•	 The Java tutorial about regular expressions might be a good starting point,

and can be referred to at: http://docs.oracle.com/javase/tutorial/
essential/regex/index.html

•	 The Javadoc of the Pattern class is a good summary and you can refer to
it at: http://docs.oracle.com/javase/7/docs/api/java/util/regex/
Pattern.html

•	 If you prefer testing the regular expressions, QuickREx is a good choice
for eclipse (KNIME) and can be referred to at:
http://www.bastian-bergerhoff.com/eclipse/features/web/
QuickREx/toc.html

There is a Reg. Exp. Library view that is also included in QuickREx.

Alternative pattern description
In KNIME, there is an alternative, simpler form of pattern description named
wildcard patterns. These are similar to the DOS/Windows or UNIX shell script
wildcard syntax. The * character matches zero or more characters (greedy match),
but the ? character matches only a single character. The star and question mark
characters cannot be used in patterns to match these characters.

Transforming the shape
There are multiple ways to change the shape of the data. Usually, it is just projection
or filtering, but there are more complex options too.

Filtering rows
For row filters, the usual naming convention is used; that is, the node names ending
with "Filter" give only a single table as a result, while the "Splitter" nodes generate
two tables: one for the matches and one for the non-matching rows.

Data Preprocessing

[40]

For single-column conditions, the Row Filter (and Row Splitter) node can be used
to select rows based on a column value in a range, regular expression, or missing
values. It is also possible to keep only these rows or filter these out. For row IDs, you
can only use the regular expressions.

The rows can also be filtered by the (one-based) row index.

The Nominal Value Row Filter node gives a nice user interface when the possible
values of textual columns are known at configuration time; so, you do not have to
create complex regular expressions to match only those exact values.

There is a splitter, especially for numeric values, named Numeric Row Splitter. The
configuration dialog allows you to specify the range's openness and gives better
support for the variable handling than the Row Splitter node.

When you want to filter based on a date/time column, you should use the Extract
Time Window node, which allows you to specify which time interval should be
selected in the result table.

Imagine a situation where you already have a list of values that should be used as a
filter for other tables; for example, you used HiLite to select certain values of a table.
In this case, you can use one of this table's column to keep or remove the matching
rows based on the other table's column. This can be performed by using the
Reference Row Filter node. The Set Operator node is also an option to filter based
on the reference table (Complement, Intersection, Exclusive-or), but in this case,
you get only the selected columns and not the rest of the rows.

Use the Set Operator node to create reference tables.

A very general option to filter rows is using either the Java Snippet Row Filter or
the Java Snippet Row Splitter node. These are interpretations of Java (Boolean)
expressions for each row, and based on these results the rows are included or
excluded.

We have already introduced the HiLite Filter node in the previous chapter, which is
also a row-filtering node.

Sampling
If you want to split the data for training, testing, or validation, you can use the
Partition node that allows you to use the usual options for this purpose (such as
stratified sampling). The filtering version is named Row Sampling. If you need
sampling with replacement, you should use Bootstrap Sampling.

Chapter 2

[41]

The Equal Size Sampling node tries to find a subset of rows that satisfies the
condition of each value being represented (approximately or exactly) the same
number of times as a given nominal column.

Appending tables
This node might not be so easy to find; it is named Concatenate or Concatenate
(Optional in). These nodes can be used to have two or more (up to four) tables'
content in a new one. The handling of the row IDs and the different columns should
be specified.

If the data you want to add is just the empty rows with the specified columns, Add
Empty Rows will do that for you.

Less columns
Sometimes too much data can be distracting, or it might cause problems during
modeling and transformation. For this reason, there are nodes to reduce the number
of columns. In this section, we will introduce these nodes.

The Column Filter node is the most basic option to remove columns. You can specify
which columns you want to keep or remove. A similar purpose node is the Splitter
node. The only difference is that both parts will be available, but in different tables.

The Reference Column Filter node helps in creating similar tables, but you can also
use this to remove common columns based on a reference table.

When you create a column to represent the reason for missing values, you might need
to replace the original column's missing values with that reason. For this task, the
Column Merger node can be used. It has the option to keep the original columns too.

When you want to have the values from different columns in a single collection
column, you should use the Create Collection Column node. It can keep the original
columns, but can also remove them. You can specify if you want to get the duplicate
values removed, or if they should be kept in the selected columns.

Dimension reduction
Sometimes, you don't have a prior knowledge of which columns are useful and
which are not. In these cases, the dimension reduction nodes are of great help.

The Low Variance Filter node keeps the original columns unless their variance
is lower than a certain threshold (you can specify the variance threshold and the
columns to check). Low variance might indicate that the column is not having an
active role in identifying the samples.

Data Preprocessing

[42]

When you want to select the columns based on the inter-column correlation, you
should use the Correlation Filter node with the Linear Correlation node. The latter
can compute the correlation between the selected columns, and the filter keeps only
one of the highly correlated columns (for "high", you can specify a threshold).

The Principal Component Analysis (PCA) is a well-known dimension-reduction
algorithm. KNIME's implementation allows you to invert the transformation (with
errors if any information was omitted). The nodes are: PCA (computes and applies
transformation based on threshold or number of dimensions), PCA Compute
(computes the covariance matrix and the model), PCA Apply (applies the model
with the settings), PCA Inversion (inverts the transformation).

The multidimensional scaling (MDS) operation is also a dimension-reduction
algorithm. To use a fixed set of points/rows, you should use the MDS Projection
node, but if you want to use data points automatically, the MDS node is your choice.

More columns
When you have columns that contain too much data in a structured form, you might
want them being separated to new columns. You might also need to combine one
data source with another; we will describe how to do this in this section.

The Cell Splitter node can create new columns from textual columns by splitting
them using a delimiter text, while the Cell Splitter By Position node creates the
new columns by the specified positions (and column names). The first node is useful
when you have to do simple parsing, (for example, you read a table with tabs as
separator characters, but the date field also uses a separator character, such as /,
or -), but the second is better when you have a well-defined description with fixed
length parts (like ISBN numbers or personal IDs).

With the Regex Split node, you can do more complex parsing of the data. Each
capturing group can be extracted to a column. Keep in mind that for groups that
have multiple matches, such as (…)+, only the last match will be returned, not all, or
the first.

The Column to Grid node is used for moving data from rows to new columns in the
order of the rows. It will remove the unselected columns, because those cannot be
represented in this way, but the selected ones will contain the values from rows in
the new columns.

A practical task is referring to previous rows. It is not impossible to achieve this with
other nodes, but the Lag Column node makes this an easy task.

Chapter 2

[43]

Finally, you can combine two tables using the Joiner node. It can perform inner, left,
right, or outer joins, based on the row keys or columns. This way you can enrich your
data from other data sources (or from the same data source if there are self-references).
If you would like to join two tables based on the row indices (practically combine them
in a new table horizontally), you should use the Column Appender node.

GroupBy
GroupBy is the most versatile data shaping node, even though it looks simple.
You specify certain columns that should be used to group certain rows (when the
values in the selected columns are the same in two rows, they will be in the same
group) and compute aggregate values for the nongroup columns. These aggregation
columns can be quite complex; for example, you might retain all the values if you
create a list of them (almost works like pivoting). If you want to create a simple
textual summary about the values, the Unique concatenate with count node might
be a nice option for this purpose. If you want to filter out the infrequent or outlier
rows/groups, you can compute the necessary statistics with this node. It is worth
noting that there are special statistical nodes when you do not want to group certain
rows. Check the Statistics category for details. However, you can also check the
Conditional Box Plot node for robust estimates.

With the Ungroup node, you can reverse the effect of GroupBy transformations by
creating collection columns; for example, if you generate the group count and the
values in the first step, filtering out the infrequent rows will give you a table, which can
be retransformed with the Ungroup node (assuming you need only a single column).

Simpler pivoting/unpivoting can be done this way.

In the preceding screenshot, we start with a simple table, GroupBy using the Class
column, and generate the list of values belonging to those classes, then we undo this
transformation using the Ungroup node by specifying the collection column.

Data Preprocessing

[44]

Pivoting and Unpivoting
The Pivoting node's basic option (when there is no actual pivoting) is the same as the
GroupBy node. When you select the pivoting columns too, these columns will also
act as grouping columns for their values; however, the values for group keys will not
increase the number of rows, but multiply the number of columns for each aggregate
option. The group totals and the whole table totals are also generated to separate the
tables. The Append overall totals option has results in the Pivot totals table only.)

When you want to move the column headers to the rows and keep the values,
Unpivoting will be your friend. With this node, the column names can be retrieved,
and if you further process it using the Regex Split and Split Collection Column
nodes, you can even reconstruct the original table to some extent.

This time the initial table is a bit more complex, it has a new column, letter. The
Pivot node used with the new column (letter) as grouping and the Class as pivot
column. This time not just the list, but also the count of numbers are generated (the
count is the most typical usage). The three output tables represent the results, while
the table with the RowIDs column is the result when the Unpivoting node is used on
the top result table with the count columns as values and the letter column retained.

Chapter 2

[45]

One2Many and Many2One
Many modeling techniques cannot handle multinomial variables, but you can easily
transform them to binomial variables for each possible value. To perform this task, you
should use the One2Many node. Once you have created the model and applied it to
your data, you might want to see the results according to their original values. With
the Many2One node, this can be easily done if you have only one winner class label.

The One2Many node creates new columns with binary variables, while the Many2One can convert them back.

Cosmetic transformations
This section will summarize some of the options that are not so important for the data
mining algorithms, but are important when you want to present the results to humans.

Renames
The Extract Column Header and Insert Column Header nodes can help you if you
want to make multiple renames with a pattern in your mind. This way, you can
extract the header, modify it as you want (for example, using another table's header
as a reference), and insert the changed header to the result. For those places where a
regular expression is suitable for automatic renames, the Column Rename (Regex)
node can be used.

When a manual rename is easier, the Column Rename node is the best choice; it can
even change the type of columns to more generic or compatible ones.

Changing the column order
The Column Resorter node can do what its name suggests. You can manually select
the order you would prefer, but you can also specify the alphabetical order.

Data Preprocessing

[46]

Reordering the rows
Using the Sorter node, you can order your data by the values of the selected column.
Other columns can also be selected to handle ties.

When you want the opposite, for example, get a random order of rows, the Shuffle
node will reorder them.

The row ID
The row ID, or row key, has an important role in the views, as in the tooltips, or as
axis labels, where usually the row ID is used. With the RowID node, you can replace
the current ID of rows based on column values, or create a column with the values
of row ID. You can even test for duplication with this node by creating a row ID
from that column. If there are duplicates, the node can fail or append a suffix to the
generated ID depending on the settings.

When you use the row IDs to help HiLiting, the Key-Collection HiLite Translator
node is useful if you have a column with a collection of strings, which are the row
keys in the other table.

Transpose
The Transpose node simply switches the role of rows and columns and performs
the mathematical transpose function on matrices. It is not a cosmetic transformation,
although it can be seldom used to get better looking results. The type of the column
is the most specific type available for the original row.

Transforming values
Sometimes the data that you have requires further processing; that is, not just
moving around but also changing some values.

Generic transformations
A quite flexible node is the Rule Engine node that creates or replaces a column based
on certain rules involving other columns. It might contain logical and relational
operators for texts, and it can even check for inclusion (IN) for a certain set of values
or limited pattern matching (LIKE as in SQL). The result can be either a constant, a
column's value, or a flow variable. It can also handle the missing values.

When you want to fill the metadata, you should use the Domain Calculator node. With
the help of this node, you can create nominal columns from textual (String) columns.

UNIT - V

Data Exploration
In this chapter, we will go through the main functions of KNIME visualization
(except reporting) and other techniques to explore the data you have. This can
be helpful when you want to do the preprocessing too, but you can also check
the result of visualization or see how well they fit the computed models and the
test/validation data. The topics covered in this chapter are as follows:

•	 Statistics
•	 Distance matrix
•	 Visual properties
•	 KNIME views and HiLiting
•	 JFreeChart nodes
•	 Some third party visualization options
•	 Tips with HiLiting
•	 Visualizing models

Computing statistics
When you want to explore your data, it usually is a good idea to compute some
statistics about them so that you can spot the obviously wrong data (for example,
when some data should be positive and it appears as a negative minimal value,
it is suspicious).

Most of the nodes require you to not have NaN values within the data to be analyzed.
You can remove them with the value modification techniques presented in the
previous chapter, or by filtering the rows, also discussed in the previous chapter.

The minimal and maximal values can be checked in the port view's Spec Columns
tab. This can already be used to spot certain kinds of problems.

Data Exploration

[68]

For statistics within groups, we have the good old GroupBy node. That allows
you to aggregate using the functions described on the Description tab of the
configuration dialog.

When you do not need the grouping, you can use the Statistics node with easier
configuration. Just select the columns, the number of values that should be present
in the view, and the number of common/rare values that should be enumerated.
You might find that the median is not computed in the results. In this case, you
should check the Calculate median values (computationally expensive) checkbox.
The following is the statistics you get in the view (for the numeric columns):

•	 Minimum
•	 Maximum
•	 Mean
•	 Std deviation
•	 Variance
•	 Overall sum
•	 No. missings
•	 Median
•	 Row count

You also get the number of missing values and the most common and rarest values for
the selected nominal (and also numeric) columns, with their number of occurrences.

The statistics table, which is the first output port, contains the same content as the
view for the numeric columns. The second output port (occurrences table) gives
a table with the number of occurrences for each numeric and nominal values in a
decreasing order of frequencies (including the missing values).

Using the output tables, you can create conditions or further aggregate operations.
For example, creating the flow variables from the certain mean and standard
deviation and creating conditions using the Java Edit Variable node allows you to
filter the rows with certain ranges related to the mean and standard deviation with
the row filtering/splitting nodes. (Or use the Java Snippet Row Filter node directly
with the flow variables.)

The Value Counter node acts in a manner similar to the Statistics node's second
output, but in this case, only a single column is used. So, no missing values will
appear in the count column (which is not sorted) and the values from the original
column will appear as row IDs. In this form, they are better suited for visualization.
Also, because this node is able to support HiLite, you can select the original rows
based on the frequency values.

Chapter 3

[69]

When you want a similar (frequency) report with two columns and a possible weight
column to create crosstabs, you should use the Crosstab node. In the view of the
node, you get the crosstab values in the usual form. You can specify which parts
(Frequency, Expected, Deviation, Percent, Row Percent, Column Percent, or Cell
Chi-Square) should be visible. (The row and column totals are always visible, and if
there are too many rows or columns, you can keep only the first few.)

There is another table in the view, beneath the frequency. It is the summary of the
Chi-Square statistics (degree of freedom (DF), the 2 Value, and the probability (Prob)
of no association between the values (a p-value)), and also the Fischer test's probability,
when both columns contain exactly two values.

The Crosstab node's first output port contains the values similar to the view's main
table, but in this case, it is in a different form: the column values are in columns,
while the statistics (Frequency, Expected, Deviation, Percent, Row Percent, Column
Percent, Total Row Count, Total Column Count, Total Count, and Cell Chi-Square)
are in other columns. You can transform it to the usual crosstab form (keeping a
single statistics) using the Pivoting node (select one of the columns as the group
column, the other as pivot, and the statistics should be used as an aggregation
option). You can check the workflow from the crosstab.zip file available on this
book's website.

The second output table of the Crosstab node contains the statistics just like the
second part of the view, but in this case it is in a single row even if both the columns
contain two values (the Fischer test's p-value is in the last column).

When you want to create a correlation matrix, you should use the Linear
Correlation node. It will compute the correlation between the numeric-numeric
and nominal-nominal pairs. Also, a model will be created for further processing.
You can use this information to reduce the number of columns with the help of the
Correlation Filter node.

The view of the Linear Correlation node gives an overview about the correlation
values with the color codes.

There are three t-test computing nodes: Single sample t-test, Independent groups
t-test, and Paired t-test. The Single sample t-test can be used to test whether the
average of the selected columns is a specified value or not. The t-value (t), degree
of freedom (df), p-value (2-tailed), Mean Difference, and confidence interval
differences are computed relative to the specified mean value (the Test value). The
other output table contains some statistics about the columns, such as the computed
mean, standard deviation, standard error mean, and the number of missing values in
that column.

Data Exploration

[70]

The view of Single sample t-test contains the same information as the two
output tables.

When you want to compare the means of two measurements of the same population
(or at least not independent), you can use the Paired t-test node. The view and
the resulting tables contain the same statistics as the Single sample t-test node,
but in this case the mean difference is replaced with the standard deviation and
the standard error mean values, both in the view and the first output table. The
configuration options allow you to select multiple pairs of numeric columns.

For two sample t-tests, you should use the Independent groups t-test node. It
expects the two groups to be defined by a column; the values are grouped by that
column's values. You can select the column that contains the class for grouping
and the values/labels for the two groups within that column. The average of the
columns will be compared, and the t-tests will be computed both for the equal
variance assumption and without that assumption (first output table). The Levene
test is also computed to help decide whether the equal variance can be assumed
(second output table).

The descriptive statistics is augmented with the number of rows that are not in either
group (Ignored Count (Group Column)).

The last test for hypothesis testing is the One-way ANOVA. It allows you to
compare the means within groups defined by the values of a single column, just like
the Independent groups t-test node does; however, it supports multiple groups.

Finally, when you need robust statistics, you can use the Conditional Box Plot
node. It gives you the minimum and maximum values, the median, Q1, Q3, and the
whisker values (can be the same as min/max, else the 1.5 times interquartile range
(Q3 – Q1) below or above Q1 and Q3).

Overview of visualizations
The various options to visualize data in KNIME allow you to get an overview or
even publication-quality figures from the data you have preprocessed and analyzed.

The interactive versions of a node allow you to change the column selections and
probably the other extra options.

The JFreeChart nodes generate images from the input data, which is also available as
a view with further customization options. These nodes usually do not support the
HiLite feature and the different visual properties (color, size, and shape).

Chapter 3

[71]

First, to help decide what you use to open the data, we will compare the capabilities
of the different visualization nodes:

Node Supported data types Remarks
Box Plot Numeric (multiple) Provides robust stats
Conditional Box Plot Nominal and numeric

(multiple)
Also gives robust stats

Histogram Nominal or numeric and
numeric

Histogram (interactive) Nominal or numeric and
numeric

Interactive Table Any Similar to port view
Lift Chart Nominal and probability
Line Plot Numeric (multiple)
Parallel Coordinates Nominal or numeric
Pie chart Nominal and numeric
Pie chart (interactive) Nominal and numeric
Scatter Matrix Nominal or numeric Multiple scatter plots
Scatter Plot Nominal or numeric (two)
Bar Chart (JFreeChart) Nominal
Bubble Chart (JFreeChart) Numeric (three)
Group By Bar Chart
(JFreeChart)

Nominal (unique) and
numeric

Color properties
supported

HeatMap (JFreeChart) Distance or numeric Distance between rows
Interval Chart (JFreeChart) Date and nominal
Line Chart (JFreeChart) Numeric (multiple) or date Color properties

supported
Pie Chart (JFreeChart) Nominal Color properties

supported
Scatter Plot (JFreeChart) Numeric (two) Color, shape used
Linear Regression (Learner) Numeric (multiple) Scatter + line of model
Polynomial Regression
(Learner)

Numeric (multiple) Scatter + graph of model

OSM Map View Numeric (two) Spatial data
OSM Map to Image Numeric (two) Spatial data, creates

image
Hierarchical Cluster View Distance and cluster model Dendrogram

Data Exploration

[72]

Node Supported data types Remarks
ROC Curve Nominal and numeric

(multiple)
Enrichment Plotter Numeric (multiple)
Spark Line Appender Numeric (multiple) No view, but creates

images
Radar Plot Appender Numeric (multiple) No view, but creates

images

There are a few other view-related nodes in KNIME (and many more with mostly
textual views). The Image To Table node can be useful when you want to iterate
(loop) through certain parts generating images. Because the image ports (dark green
filled rectangles) cannot be used with loop end nodes, you have to convert them to a
table column. This is the exact purpose of the Image To Table node.

On the other hand, when you want an image port to hold an image (for example, to
include it in a report), you should use the Table To Image node, which selects the
first row's selected image column and returns it as an image port object.

The last notable node is the Renderer to Image. It simply grabs a column and the
selected renderer, and creates an SVG or PNG image column with its content. You
can use this later in web pages or other places, where supported. This is very handy
when you want to handle a special kind of content; for example, molecules.

Visual guide for the views
In this section, we will introduce the iris dataset (Frank, A. & Asuncion, A. (2010).
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). Irvine,
CA: University of California, School of Information and Computer Science. Iris dataset:
http://archive.ics.uci.edu/ml/datasets/Iris) with some screenshots from
the views (without their controls).

Chapter 3

[73]

Box plot for the numeric columns

The Conditional Box Plot and the Box Plot nodes' views look similar. These are
also sometimes called box-and-whisker diagrams. The Box Plot node visualizes
the values of different columns, while the Conditional Box Plot view shows one
column's values grouped by a nominal column's values. As you can see in the
screenshot, the HiLite information is visible for the outliers (but only for those
values). You can also select the outliers and HiLite them.

The shape of the outlier points is not influenced by the shape property.

Histogram with a few columns selected, HiLited rows and colored values based on class attribute

Data Exploration

[74]

As the screenshot shows, the Histogram node's view is capable of handling the
color properties. It also supports the aggregation of different values, and the option
to show the values for the selected (or all) columns. The adjacent columns within the
dashed lines represent the different columns for each binning column value. This
way, you can compare their distributions for certain aggregations. The interactive
and the normal versions look quite similar, but they differ in configuration and
view options.

The Interactive Table view with changed renderer for petal length and color codes for class, Row43 is HiLited

The Interactive Table view first looks and works like a normal port view for a data
table (such as the options on the context menu for the column header: Available
Renderers, Show Possible Values, and sorting by Ctrl + clicking on the header;
the latter can be done from the menu with a normal click, too), although it offers
HiLiting and a few other options.

Lift chart of a model predicted by a decision tree, the colors are: red – lift, green – baseline, cumulative lift – blue

Chapter 3

[75]

The Lift Chart view can help evaluate a models' performance. The Cumulative Gain
Chart tab looks similar, although it has only two lines.

Line plot with some two HiLited rows and the four numeric columns: red – sepal length, yellowish – sepal
width, green – petal length, blue – petal width

The Line Plot view can be used to compare the different columns of the same rows.
The rows are along the x axis, while their values for different columns are along the y
axis. The adjacent row's values for the same column are connected with a line.

Parallel coordinates with colored curvy lines, the columns are: sepal length, sepal width, petal length, petal
width and class

Data Exploration

[76]

The Parallel Coordinates view can also visualize the individual rows, but in this case,
the row values for the different columns are connected (with lines or with curves). In
this case, the columns are along the x axis, while the values are along the y axis.

Scatterplot of sepal length vs. petal width with size information from sepal width

The Scatter Plot views can be used efficiently to visualize the two dimensions.
Although, with the properties, the number of dimensions from which information is
presented can grow to five.

The Open Street Map integration offers many ways to visualize spatial data; it supports color, shape, and size
properties and also works with HiLiting. Selected information from the input table is also available as a tooltip.

Chapter 3

[77]

The OSM Map View and OSM Map to Image nodes are designed to show data on
maps. They are very flexible, and can show many details, but they can also hide the
distracting layers.

Hierarchical clustering dendrogram (average linkage with Euclidean distance using the numeric columns)

The best way to visualize a clustering is by using a dendrogram, because the
distances between the clusters are visible in this way. The Hierarchical Cluster
view offers this kind of model visualization. To show the similarity between the
rows, first you have to compute the cluster model using the Hierarchical Clustering
(DistMatrix) node from the KNIME Distance Matrix extension, available on the
KNIME update site.

JFreeChart bubble chart

Data Exploration

[78]

The Bubble Chart (JFreeChart) node can offer an alternative to the scatter plots;
however, in this case, the dimension of the size is also mandatory.

JFreeChart heatmap with Euclidean distance of numeric columns

The HeatMap (JFreeChart) node provides a way to visualize not just the collection
columns, but also the distances, as shown in the previous screenshot. To use the
regular tables, you might require a preprocessing step which uses the Create
Collection Column or the GroupBy node to compute the distances, but it also works
fine for displaying the values.

JFreeChart pie chart

The Pie Chart (JFreeChart) node also offers a visualization with a pie, and unlike the
Pie chart and the Pie chart (interactive) nodes, this can create three-dimensional pies.

Chapter 3

[79]

The spark lines and radar plot for numeric columns

The results of the Spark Lines Appender and the Radar Plot Appender nodes are
not the individual views, but are the new columns with the SVG images generated
for each row. We can use this in the next chapter.

Distance matrix
The distance matrix is used not just for visualization, but for learning algorithms
too. You can think of them as a column of collections, where each cell contains the
difference between the previous rows.

The supported distance functions are the following:

•	 Real distances
°° Euclidean()
°° Manhattan ()

°° Cosine ()

•	 Bitvector distances

°° Tanimoto (
v v

1 2

1
|v |+|v |-|v v |

1 2 1 2

| |
)

°° Dice (1

v v
1 2

|v |+|v |
1 2

| |2

)

°° Bitvector cosine (1
|v ||v |

1 2

v v
1 2

| |
)

•	 Distance vector (assuming you already have a distance vector, you can
transform it to a distance matrix when there are row order changes or filtering)

•	 Molecule distances (from extensions)

Data Exploration

[80]

The distance matrix feature can be used together with the hierarchical clustering,
which also provides a node to view it; this is the main reason we introduced them in
this chapter.

You can generate distances using the Distance Matrix Calculate node (just select
the function, the numeric columns, and set the name. The chunk size is just for
fine tuning larger tables), but you can also load that information with the Distance
Matrix Reader node.The HiTS extension (http://code.google.com/p/hits) also
provides a view to show dendrograms with heatmaps.

Using visual properties
One of KNIME's great features is that it allows you to set certain properties of the
views in advance. So, you need not remember how you set them in one view and
how it is set in another, you just have to connect them to the same table. This is a
big step towards reproducible experimental results and figures with the ease of
graphical configuration. Each property is applied to the rows based on column
values, so changes in column values will affect (remove) the property and each
kind of property is exclusive (a new node with the same kind of properties
replaces the original property). When you want to reuse the properties in another
place of the workflow, you can use the appender nodes.

The three supported properties are: color, size, and shape.

Color
With the Color Manager node, you can set the color for different rows. The colors
can be assigned either to a nominal or a numeric column.

In the case of the nominal columns, each value can have a different color. This can
be useful when you want to compare the actual or the predicted labels/classes of
the rows.

When you assign colors to the numeric columns, the color of the minimal and the
maximal value (as it is available in the column specification: Lower Bound, Upper
Bound) should be specified. The remaining shades are linearly computed.

The Color Appender node allows you to use the same color configuration for other
tables. Be careful when there are values outside the domain. The nearest extreme
value is used in case of numeric columns and the black color is used for nominal
columns. It is also possible to set an incompatible format to the column, but in that
case, it will not be used.

Chapter 3

[81]

Size
The size of the points can be really a good indicator of the nonvisible attributes.
It allows you to have larger or smaller dots for the different data points in views.
The size is computed by the Size Manager node as a function of the input from the
minimal value to the maximal value, similar to the numeric color property. (Based
on the domain bounds, outside them the nearest extreme is used.)

Be careful not to use this node on columns where the minimum is less
than zero (the logarithmic and the square root function would generate
a complex number). Also, check the bounds after filtering; you might
need to use the Domain Calculator.

The following are the supported functions:

•	 LINEAR: It is a linear function between the bounds
•	 SQUARE_ROOT: It is useful when you want a less increase in the

higher values, but want more details of the lower values
•	 LOGARITHMIC: It is ideal when there is large difference between

the bounds and more details near the lower bound is interesting
•	 EXPONENTIAL: The exponential function will make even small

differences large

The Size Appender allows you to use the same size configurations in different
places of the workflow, even for other columns.

Shape
The last property you can set is the shape of the points. For this purpose, you have
the Shape Manager node, which allows you to set the shape based on a nominal
column's values. Together with the Color Manager, you can visualize both the
predicted and the original class of the training dataset. This can give you a better
idea when the data is not properly learned and clustered, and might give you ideas
to improve the settings.

Similar to other properties, the Shape Appender can bring the shape configuration
to other parts of a workflow.

Data Exploration

[82]

KNIME views
You can export the view contents to either the PNG or SVG files from the File | Export
as menu. (The latter is only available when the KNIME SVG Support is installed.)

It is worth noting the other usual view controls. The File menu contains the Always
on top and Close options, besides the previously discussed Export as menu. The first
option allows you to compare the multiple views easily by having them side-by-side
and still working with other windows.

The rest of the menus are related to HiLiting, which will be discussed soon.

The configuration of nodes usually includes an option of how many different
values or how many rows should be used when you create the view. Because the
views usually load all the data (or the specified amount) in the memory to have
a resizable content, too many rows would require too much memory, while too
many different values would make it hard to understand either the legends or the
whole view in certain cases.

The mouse mode controls allow you to select certain points or set of points (for
example, in the case of hierarchical clustering and the histogram nodes), to zoom
in or to move around in a zoomed view. With the Background Color option, you
can change the background of the plot. The Use anti-aliasing option can be used to
apply subpixel rendering for fonts and lines.

HiLite
The HiLite menu consists of the HiLite Selected, UnHiLite Selected, and Clear
HiLite items. With these items, you can create fine-grained HiLite rows. Once
you select a few data points/rows, you can add or remove the HiLite signal using
the first two options, and the third clears all the HiLite signals from this part of
the workflow.

Lots of the nonview nodes also have HiLite-related options, which can be very
handy when the row's IDs change and want to propagate HiLiting to the parts
with different row IDs of the workflow; however, beware, as this usually requires
additional memory.

The Show/Hide menu (or the HiLite/Filter menu) also helps the HiLite operations.
The Show hilited only option hides all the non-HiLited rows/points. The default
option is usually Show all, but the Fade unhilited option is a compromise between
the two (shows both the kinds of data, but the non-HiLited are faded or grey).

Chapter 3

[83]

Use cases for HiLite
You might wonder how this HiLite feature is useful.

With the Box Plot and the Conditional Box Plot nodes, you can select the rows
that have extreme values in certain columns or extreme values within a class
without creating complex filtering. (The extremity is defined as below Q1 - 1.5IQR
or as above Q3 - 1.5IQR

It is also useful to see the same selection of data from different perspectives. For
example, you have the extremes selected based on some columns, but you are
curious to know how they relate to other columns' values. The Parallel Coordinates
or the Line Plot can give a visual overview of the values. The Scatter Plot (or the
Scatter Matrix) node is also useful when different columns should be compared.

When you prefer the numeric/textual values of the selected rows, you should use
the Interactive Table node. It allows you to check the HiLited and non-HiLited rows
together or independently with the order of the column you want.

With the Hierarchical Clustering View node, you can select certain clusters (similar
rows). This can also be useful to identify the outlier groups based on multiple
columns (as the distances can be computed from more than one columns).

Row IDs
It is important to remember that the row IDs play an important role for most of the
KNIME views. The row IDs are used as axis values; that is, tooltips. So, to create a
nice, easy-to-understand figure/view, you have to provide as many useful row IDs
as you can.

To use meaningful labels, you have to create a column with the proper (unique)
values, and make that column a row ID with the help of the RowID node. This
node also offers HiLite support (Enable Hiliting), so you do not have to make a
compromise between neat figures and HiLiting.

Extreme values
The infinite values (Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY)
make the ranges meaningless, because these values are not measurable by normal
real values.

Data Exploration

[84]

The other special value is the Double.NaN (not a number) value, which you get, for
example, when you divide zero by zero. It is not equal to any numeric value, not
even to itself. It also makes comparison impossible, so it should be avoided as much
as possible. The previous chapter has already introduced how to handle these cases.

The missing values are usually handled by not showing the rows containing them,
but some views make it possible to use different strategies.

Basic KNIME views
The main views of KNIME give you multiple options to explore data. These nodes
do not provide options to generate images for further nodes, but they give quite a
good overview about the data, and you can save the files using the File menu.

There are different flavors for some of the nodes: the interactive and the normal.
With the interactive flavor, you can modify certain parameters of the view without
reconfiguring (and executing) the view. The interactive versions are better suited
for data exploration, but the normal ones make it easier to check certain things with
new data.

The Box plots
The Box Plot node has no configuration, but gives robust statistics (minimum,
smallest, lower quartile, median, largest, and maximum) for numeric columns. You
might wonder about the difference between the minimum and the smallest values or
the largest and maximum values. The smallest is the maximum of the minimal value
and the Q1 - 1.5 1 - 1.5(3 - 1)IQR = Q Q Q value. The largest is computed analogously.

The view gives a box-and-whisker diagram, which is useful to find outliers. The
Column Selection tab allows you to focus only on certain columns. The Normalize
option on the Appearance tab will rescale the box-and-whisker diagrams to have the
same length on the screen between the minimum and maximum values.

The Conditional Box Plot node's view is quite similar to the Box Plot view, although
in this case, the diagram is not split by the columns, but by a preselected nominal
column. The values are representing the values from a numeric column. You can also
select whether the missing values should be visible or not.

The node view controls are really similar to the Box Plot's. However, in this case,
the Column Selection tab does not refer to the columns from the table, but to the
columns on the diagram; you can select the class values that should be visible.

Chapter 3

[85]

Hierarchical clustering
There is an option to visualize the result of hierarchical clustering with the
Hierarchical Cluster View node; however, it is worth summarizing how you can
reach the state when you can show the cluster model. First, you have to specify the
distance between the rows using one of the options we described in the Distance
matrix section.

In the Hierarchical Clustering (DistMatrix) node's configuration, the main option
you have to select is the Linkage Type, which defines how the distance between the
clusters should be measured:

•	 Single: It measures the minimal distance between the cluster points
•	 Average: It measures the average of differences between the points of

the clusters
•	 Complete: It measures the maximal distance between the cluster points

You can also select between the distance matrices if you have multiple columns.

Histograms
The difference between Histogram and Histogram (interactive) is minimal in the
configurations (the non-interactive version allows you to specify the number of bins
configuration time). The common configuration options are the Binning column,
Aggregation column, and the No. of rows to display. With the Binning column
option, you can define how the main bins should be created; it can be either nominal
or numeric. The coloring information splits between the bars, and the aggregation
columns are available as separate, adjacent bars.

The possible aggregation options are: Average, Sum, Row Count, and Row Count
(w/o missing values). When you have multiple aggregation columns selected, Row
Count (with missing values) is not an informative or recommended choice.

On the Visualization settings tab, you can further customize the view, by enabling/
disabling outlines, grid lines, the orientation, width, or the labels.

The Details tab gives the information about the selected bars, such as the average,
sum, count for each column, and colors. (You can select the monochrome part of a
bar too.)

Data Exploration

[86]

Interactive Table
The interactive table looks like a plain port view; however, it gives further options,
such as the HiLiting support and the optional color information (in the port view,
it is not optional). You can also save the content to the CSV file (Output | Write
CSV), adjust the default column and row size (View | Row Height... and Column
Width...), and find certain values (Navigation | Find, Ctrl + F).

The options for sorting by columns (Ctrl + click, or the menu from the regular click)
and reordering (dragging) them are also available in this view, and you can select the
preferred renderers for them. However, you cannot check the metadata information
(column stats and the properties).

The Lift chart
The Lift Chart node is useful when you want to evaluate the fit of a model for a
binominal class. In the configuration dialog, you can specify what is the training
label and the value learned. The probabilities of the learned label should also be
specified, just like the width of the bins (in percentage, you will get 100/that value
points). In the view, there are two parts—Lift Chart and Cumulative Chart—both
with separate configurations of color, line widths and dot sizes (with visibilities).

The Lift Chart node also contains the cumulative lift, but it can be made invisible if
you do not want it.

Lines
The Line Plot node and the Parallel Coordinates views are similar, but they show
the data in the orthogonal/transposed form with respect to each other. The Parallel
Coordinates view contains the selected columns on the x axis and the row values
flow horizontally colored by the color properties, while in Line Plot, the rows are on
the x axis and the (numeric) columns are represented by user-defined colors.

The missing values are handled differently; in Line Plot, you can try to interpolate,
while in the other, you can either omit or show them or their rows.

Line Plot is more suited for equidistant data, such as time series, for other data
it might give misleading results (the distances between the rows are the same).
The Parallel Coordinates view is better suited to find connections between the
values of different columns, because in this case you have no ordering bias. The
Parallel Coordinates view gives a neat option to use curves instead of straight lines.
Fortunately, you can change the order of columns within the view using the extra
mouse mode Transformation, so you can create neat figures with this view. This
view is quite good to show intuitive correlations.

Chapter 3

[87]

Pie charts
The Pie Chart and the Pie Chart (interactive) nodes have the same configuration
options, although for the latter, the configuration gives only the overridable defaults
in the view. These configurations include the binning column and the aggregation
column, just like the aggregation function.

With Ctrl + click, you can select multiple pies. HiLiting works in this view, and
the Details tab contains statistical information for each selected sections, which
is split by the colors within the pies. When the binning is not consistent with the
color property, no coloring is applied unless you select them (and enable the Color
selected section).

In the Visualization setting tab, you can specify whether the section representing
the missing values should be visible or not, show outline, explode the selection, or
whether the aggregated value/percent should be visible or not (for selected, all, or
no sections). The size of the diagram too can be adjusted in this tab.

The Scatter plots
The Scatter Matrix and the Scatter Plot nodes are quite similar. The Scatter Matrix
node is a generalization of the latter. It allows you to check the scatter plots for
different columns side-by-side.

A scatter plot can use all the visual properties (size, shape, and color), so you can
visualize up to five different columns' values on a 2D plot.

There are not many configurations for either maximum rows or maximum distinct
nominal values in a column.

In the case of Scatter Plot, you can only select the two columns for the x and
y axes, but in case of the Scatter Matrix node, you can set the ranges for them.
With the Scatter Matrix, you can select multiple columns, and when you are in
the Transformation mouse mode, you can rearrange the rows/columns, but you
cannot change their ranges.

Both the views support the jittering when one of the columns is nominal (the
Appearance tab, Jitter slider). In that case, the values in the other dimension get
some random noise, so the number of points at a position could be easily estimated.
If you want precise positions, you might consider adding transparency to the color
of the points, so when there are overlaps, they will be more visible.

Data Exploration

[88]

The Linear Regression (Learner) and the Polynomial Regression (Learner) nodes
also provide the scatter plot views, although these show the model as a line. It can
be useful to have a visual view of the regression, even though these do not specify
which slice of the function is shown from the many possible functions, parallel to
the selected.

Spark Line Appender
The Spark Line Appender node does not have a view, but it generates a column
with an SVG image of a line plot of the selected numeric columns, for that row.
This can be useful to find interesting patterns. However, it is recommended to
use Interactive Table, because the initial size is hard to see, and changing the row
height multiple times is not so much fun (and can be avoided if you hold the Shift
key while you resize the height of a row). But with the special view, you can do
that from the menu.

Radar Plot Appender
The Radar Plot Appender node works quite like the previous node, although it has
more configuration options. You can set many colors for the SVG cell, and also the
ranges and the branches (columns) of the radar plot. The resulting table has a bit
larger predefined row height, but the use of an Interactive Table view might still be
a good idea.

The Scorer views
The ROC Curve (ROC (Receiver Operating Characteristic)) and Enrichment Plotter
nodes give options to evaluate a certain model's performance visually. Because the
views are not too interactive, you have to specify every parameter upfront in the
configuration dialog.

In the ROC Curve configuration, you have to select the binominal Class column and
the label (Positive class value) to which the probabilities belong. This way, you will
be able to compare different kinds of models or models with different parameters.
The node also provides the areas beneath the ROC curve in the result table.

The Enrichment Plotter node helps you decide where to set the cut-off point to select
the hits. The node description gives a more detailed guide on how to use it.

Chapter 3

[89]

JFreeChart
The JFreeChart nodes are not installed by default, but the extension is available
from the standard KNIME update site under the name KNIME JFreeChart.

The common part of these nodes is that you have to specify the appearance of
the result in advance, and the focus is not on the view, but on the resulting image
port object.

In the General Plot Options Configuration tab, you can specify the type of the
resulting image (PNG or SVG), the size, the title, colors, and the font size (relative
to the standard font for each item printed).

You can use the port objects in the reports, but you can also use them to check certain
properties if you iterate through a loop and convert the result with Image To Table.

It is important to note that the customizable JFreeChart View tab is only available in
freshly executed nodes. The generated image can be visualized either using the view
or the image output.

In the JFreeChart View tab, you can customize (from the context menu) almost every
aspect of the diagram (fonts, colors, tics, ranges, orientation, and outline style). This
way, the output can be of quite a high quality. It is also important to note that the
export is easier: you can use the Copy option to copy it to the clipboard or directly
use the Save as... option to save it as a PNG file, and because there are no visible
controls, you do not have to cut them off.

These nodes do not support HiLiting, but they provide tooltips about values. The
support for properties is usually not implemented.

You can zoom in on these nodes by selecting a region (left to right, top to bottom)
and zoom out by selecting in the opposite direction. You can also use the context
menu's zooming options. (It seems that you cannot move around using the mouse
or keyboard, so you have to zoom out and select another region if you want to see
the details of that region.)

The Bar charts
The Bar Chart (JFreeChart) node's view is similar to a usual histogram, but it does
not allow any other aggregation other than the count function, and only nominal
columns are accepted. The color of the first column can be specified, just like the
labels for the axis. The nominal columns' values can be rotated, and the angle can
be set. You can also enable/disable the legends.

Data Exploration

[90]

The GroupBy Bar Chart (JFreeChart) node's configuration is similar, except in this
case, the nominal column is a single column (it can also be numeric), and the rest
of the numeric columns can be visualized against it. It is important to note that the
binning column should contain unique values. (The numeric values are grouped by
these values.)

The Bubble chart
The Bubble Chart (JFreeChart) node's view is analogous to the Scatter Plot view,
but in this case, you cannot set the color and the shape, but the color is not opaque. It
also cannot handle nominal columns, so you have to convert them to numbers if you
want to plot them against other columns. You must specify the x and y positions of
the bubbles, just like their radius.

Heatmap
The Heatmap (JFreeChart) node is capable of visualizing not just the values in
multiple columns, but also the distances from the other color-coded rows, when a
distance column is available.

The extreme colors can be specified in the HeatMap (JFreeChart) node's
configuration for the minimal and the maximal distance, and the legend can also
be visible or hidden. The labels for the axes can be specified, and the tooltip is also
available on demand.

The Histogram chart
This is a bit different from the histogram views previously introduced. In this view,
the histograms can be either behind or in front of other histograms. The different
ranges are shown on the same scale, so some of them can be wider while the others
are narrower.

The color of the bars is only adjustable for the first column. The histograms are
plotted in order, the last is at the back, while the first is in the front. You cannot
change the order of the histograms from the view of Histogram (JFreeChart).

The Interval chart
The Interval Chart (JFreeChart) node's view is not so interesting when your
label is not unique (or the order is not defined by its alphabetical order). But this
view supports the time values without the need to transform your data with time
information before visualization, focusing on that information.

Chapter 3

[91]

You can specify the grouping nominal column (Label) and the start and end
positions of the time intervals. Each row represents an interval.

It supports the color properties, so you can create overlapping intervals with
different colors.

The Line chart
The Line Chart (JFreeChart) node's view is quite similar to the regular Line Plot
view, except in this case, you cannot have dots to show the values. However, there
is an extra input table to specify the colors of the series.

The other difference is that when specified, you can use the numeric or date column's
values instead of the rows for the values of other columns; however, the connections
are still done by the adjacent rows.

The Pie chart
The Pie Chart (JFreeChart) node's view is similar to the Pie Chart node, but it is
less interactive. It still uses the color properties (as opposed to the other JFreeChart
nodes) and can draw the pie in 3D.

The Scatter plot
The Scatter Plot (JFreeChart) node uses the shape and color properties, so it can
visualize at most four columns. This is still quite static but configurable, and the
result looks good (it can contain the legend, so it is practically ready to paste).

This node is quite constant too; you have to decide which columns should be there
in the configuration dialog.

Open Street Map
In the KNIME Labs Extensions (available from the main KNIME update site) you can
install the KNIME Open Street Map Integration in order to visualize spatial data.

This extension contains two nodes, OSM Map View and OSM Map to Image. The
first one is the interactive, you can browse the map and check the data points (the
tooltips can give details about them), think find the distribution of interesting points
by HiLiting them. (HiLiting cannot be done using these nodes, but you can select
area "blindly" if you use a Scatter Plot with the longitude and latitude information.)

Data Exploration

[92]

Both nodes require coordinates to be in the range of -90 to 90 for latitude and -180
to 180 for longitude if there is an input table (which is optional). The image node's
configuration includes a map to select which area should be visible on the resulting
image, the configuration for the coordinates is on the Map Marker tab.

In the OSM Map View, you can browse by holding the right mouse button down
and moving around. Zooming is configured for double-click and mouse wheel.

3D Scatterplot
We are highlighting a view from the many third party views because this is really
neatly done, and you might not find it initially interesting if you do not work with
chemical data.

In the Erl Wood Open Source Nodes extension (from the community update site),
you can find a node called 2D/3D Scatterplot. It allows you to plot 3D data and still
use KNIME The HiLite functionality and the color, and size properties (but that can
also be selected on demand). This is a very well designed and implemented view
node. Its configuration is limited to column filtering and the number of rows/distinct
values that should be on the screen.

This node does not support the automatic generation of a diagram. It's more focused
towards exploration and not towards creating final figures.

It can also provide a regression fit line in 2D mode. It can be a good alternative to the
normal Scatter Plot node too (unless you need the shape properties).

A right-click on the canvas gives information about the nearest point as a tooltip,
which can be very useful when you need more information about the other
dimensions (even the chemical structures and images are rendered nicely).

In the 3D mode, you can select points while holding down the Ctrl key.

Other visualization nodes
There are many options to show data, and you really do not have to limit yourself
with those which are bundled with KNIME. In the community contributions
(http://tech.knime.org/community), there are many options available. We will
cherry-pick some of the more general and interesting visualization nodes.

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Using KNIME
	Few words about KNIME
	Installing KNIME
	Installation using the archive
	KNIME for Windows
	KNIME for Linux
	KNIME for Mac OS X

	Troubleshooting

	KNIME terminologies
	Organizing your work
	Nodes
	Node lifecycle

	Meta nodes
	Ports
	Data tables
	Port view

	Flow variables
	Node views
	HiLite

	Eclipse concepts
	Preferences
	Logging

	User interface
	Getting started
	Setting preferences
	KNIME
	Other preferences

	Installing extensions
	Workbench
	Workflow handling
	Node controls
	Meta nodes
	Workflow lifecycle
	Other views

	Summary

	Chapter 2: Data Preprocessing
	Importing data
	Importing data from a database
	Starting Java DB

	Importing data from tabular files
	Importing data from web services
	REST services

	Importing XML files
	Importing models
	Other formats
	Public data sources

	Regular expressions
	Basic syntax
	Partial versus whole match
	Usage from Java
	References and tools
	Alternative pattern description

	Transforming the shape
	Filtering rows
	Sampling

	Appending tables
	Less columns
	Dimension reduction

	More columns
	GroupBy
	Pivoting and Unpivoting
	One2Many and Many2One
	Cosmetic transformations
	Renames
	Changing the column order
	Reordering the rows
	The row ID

	Transpose

	Transforming values
	Generic transformations

	Chapter 3: Data Exploration
	Computing statistics
	Overview of visualizations
	Visual guide for the views
	Distance matrix
	Using visual properties
	Color
	Size
	Shape

	KNIME views
	HiLite
	Use cases for HiLite

	Row IDs
	Extreme values

	Basic KNIME views
	The Box plots
	Hierarchical clustering
	Histograms
	Interactive Table
	The Lift chart
	Lines
	Pie charts
	The Scatter plots
	Spark Line Appender
	Radar Plot Appender
	The Scorer views

	JFreeChart
	The Bar charts
	The Bubble chart
	Heatmap
	The Histogram chart
	The Interval chart
	The Line chart
	The Pie chart
	The Scatter plot

	Open Street Map
	3D Scatterplot
	Other visualization nodes

